Isolated Sign Language Recognition Through Integrating Pose Data and Motion History Images
| dc.contributor.author | Akdağ, Ali | |
| dc.contributor.author | Baykan, Ömer Kaan | |
| dc.date.accessioned | 2024-06-19T14:41:54Z | |
| dc.date.available | 2024-06-19T14:41:54Z | |
| dc.date.issued | 2024 | |
| dc.description.abstract | This article presents an innovative approach for the task of isolated sign language recognition (SLR); this approach centers on the integration of pose data with motion history images (MHIs) derived from these data. Our research combines spatial information obtained from body, hand, and face poses with the comprehensive details provided by three-channel MHI data concerning the temporal dynamics of the sign. Particularly, our developed finger pose-based MHI (FP-MHI) feature significantly enhances the recognition success, capturing the nuances of finger movements and gestures, unlike existing approaches in SLR. This feature improves the accuracy and reliability of SLR systems by more accurately capturing the fine details and richness of sign language. Additionally, we enhance the overall model accuracy by predicting missing pose data through linear interpolation. Our study, based on the randomized leaky rectified linear unit (RReLU) enhanced ResNet-18 model, successfully handles the interaction between manual and non-manual features through the fusion of extracted features and classification with a support vector machine (SVM). This innovative integration demonstrates competitive and superior results compared to current methodologies in the field of SLR across various datasets, including BosphorusSign22k-general, BosphorusSign22k, LSA64, and GSL, in our experiments. | en_US |
| dc.identifier.doi | 10.7717/peerj-cs.2054 | |
| dc.identifier.issn | 2376-5992 | |
| dc.identifier.scopus | 2-s2.0-85196325398 | |
| dc.identifier.uri | https://doi.org/10.7717/peerj-cs.2054 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.13091/5717 | |
| dc.language.iso | en | en_US |
| dc.publisher | Peerj Inc | en_US |
| dc.relation.ispartof | Peerj computer science | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Sign language recognition | en_US |
| dc.subject | Deep learning | en_US |
| dc.subject | Motion history image | en_US |
| dc.subject | Feature fusion | en_US |
| dc.title | Isolated Sign Language Recognition Through Integrating Pose Data and Motion History Images | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Baykan, Ömer Kaan | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | KTÜN | en_US |
| gdc.description.departmenttemp | [Akdag, Ali] Tokat Gaziosmanpasa Univ, Dept Comp Engn, Tokat, Turkiye; [Baykan, Omer Kaan] Konya Tech Univ, Dept Comp Engn, Konya, Turkiye | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | e2054 | |
| gdc.description.volume | 10 | en_US |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.openalex | W4398183310 | |
| gdc.identifier.pmid | 38855212 | |
| gdc.identifier.wos | WOS:001229654600001 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 2.0 | |
| gdc.oaire.influence | 2.5982607E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | Feature fusion | |
| gdc.oaire.keywords | Artificial Intelligence | |
| gdc.oaire.keywords | Electronic computers. Computer science | |
| gdc.oaire.keywords | Deep learning | |
| gdc.oaire.keywords | QA75.5-76.95 | |
| gdc.oaire.keywords | Motion history image | |
| gdc.oaire.keywords | Sign language recognition | |
| gdc.oaire.popularity | 3.891161E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 1.55494008 | |
| gdc.openalex.normalizedpercentile | 0.74 | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 8 | |
| gdc.plumx.scopuscites | 3 | |
| gdc.scopus.citedcount | 2 | |
| gdc.virtual.author | Baykan, Ömer Kaan | |
| gdc.wos.citedcount | 2 | |
| relation.isAuthorOfPublication | aea7aa1f-27e5-46d6-9fb7-317283404e6b | |
| relation.isAuthorOfPublication.latestForDiscovery | aea7aa1f-27e5-46d6-9fb7-317283404e6b |
