Isolated Sign Language Recognition Through Integrating Pose Data and Motion History Images

dc.contributor.author Akdağ, Ali
dc.contributor.author Baykan, Ömer Kaan
dc.date.accessioned 2024-06-19T14:41:54Z
dc.date.available 2024-06-19T14:41:54Z
dc.date.issued 2024
dc.description.abstract This article presents an innovative approach for the task of isolated sign language recognition (SLR); this approach centers on the integration of pose data with motion history images (MHIs) derived from these data. Our research combines spatial information obtained from body, hand, and face poses with the comprehensive details provided by three-channel MHI data concerning the temporal dynamics of the sign. Particularly, our developed finger pose-based MHI (FP-MHI) feature significantly enhances the recognition success, capturing the nuances of finger movements and gestures, unlike existing approaches in SLR. This feature improves the accuracy and reliability of SLR systems by more accurately capturing the fine details and richness of sign language. Additionally, we enhance the overall model accuracy by predicting missing pose data through linear interpolation. Our study, based on the randomized leaky rectified linear unit (RReLU) enhanced ResNet-18 model, successfully handles the interaction between manual and non-manual features through the fusion of extracted features and classification with a support vector machine (SVM). This innovative integration demonstrates competitive and superior results compared to current methodologies in the field of SLR across various datasets, including BosphorusSign22k-general, BosphorusSign22k, LSA64, and GSL, in our experiments. en_US
dc.identifier.doi 10.7717/peerj-cs.2054
dc.identifier.issn 2376-5992
dc.identifier.scopus 2-s2.0-85196325398
dc.identifier.uri https://doi.org/10.7717/peerj-cs.2054
dc.identifier.uri https://hdl.handle.net/20.500.13091/5717
dc.language.iso en en_US
dc.publisher Peerj Inc en_US
dc.relation.ispartof Peerj computer science en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Sign language recognition en_US
dc.subject Deep learning en_US
dc.subject Motion history image en_US
dc.subject Feature fusion en_US
dc.title Isolated Sign Language Recognition Through Integrating Pose Data and Motion History Images en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Baykan, Ömer Kaan
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department KTÜN en_US
gdc.description.departmenttemp [Akdag, Ali] Tokat Gaziosmanpasa Univ, Dept Comp Engn, Tokat, Turkiye; [Baykan, Omer Kaan] Konya Tech Univ, Dept Comp Engn, Konya, Turkiye en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage e2054
gdc.description.volume 10 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W4398183310
gdc.identifier.pmid 38855212
gdc.identifier.wos WOS:001229654600001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 2.0
gdc.oaire.influence 2.5982607E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Feature fusion
gdc.oaire.keywords Artificial Intelligence
gdc.oaire.keywords Electronic computers. Computer science
gdc.oaire.keywords Deep learning
gdc.oaire.keywords QA75.5-76.95
gdc.oaire.keywords Motion history image
gdc.oaire.keywords Sign language recognition
gdc.oaire.popularity 3.891161E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 1.55494008
gdc.openalex.normalizedpercentile 0.74
gdc.opencitations.count 0
gdc.plumx.mendeley 8
gdc.plumx.scopuscites 3
gdc.scopus.citedcount 2
gdc.virtual.author Baykan, Ömer Kaan
gdc.wos.citedcount 2
relation.isAuthorOfPublication aea7aa1f-27e5-46d6-9fb7-317283404e6b
relation.isAuthorOfPublication.latestForDiscovery aea7aa1f-27e5-46d6-9fb7-317283404e6b

Files