Detection of Peak Points for Wear Control of Band Saw Blades

No Thumbnail Available

Date

2024

Authors

Journal Title

Journal ISSN

Volume Title

Publisher

Institute of Electrical and Electronics Engineers Inc.

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

Industrial band saw cutting machines are widely used in metalworking and mass production processes due to their high precision and efficiency. These machines offer significant advantages such as reducing labor costs, increasing productivity, ensuring occupational safety, and saving energy. However, the wear or breakage of band saw blades can negatively impact production quality and machine performance. This study compares four different edge detection algorithms for detecting wear and fractures in the blades of industrial band saw cutting machines. These algorithms are LDC, HED, Sobel, and Canny. The selected four algorithms were applied to a dataset obtained from a project supported by the 1711 Artificial Intelligence Ecosystem Call of TÜBİTAK. The performance of the edge detection algorithms was evaluated using statistical metrics such as Mean Squared Error (MSE) and Root Mean Squared Error (RMSE). Experimental results showed that deep learning-based algorithms (Lightweight Dense CNN (LDC) and Holistically-Nested Edge Detection (HED)) performed with higher accuracy compared to image processing-based algorithms (Sobel and Canny). In particular, the LDC algorithm demonstrated the best performance with shorter processing times and fewer parameters. These findings reveal the potential of using deep learning-based edge detection algorithms for real-time fault detection and predictive maintenance in industrial cutting machines. The results obtained in this study indicate that deep learning-based methods can be effectively utilized to enhance the efficiency and reliability of industrial cutting machines. In this context, the applicability of the cost-effective and highly efficient LDC algorithm is particularly noteworthy for resource-limited systems. © 2024 IEEE.

Description

IEEE SMC; IEEE Turkiye Section

Keywords

Band Saw Blade, Cnn, Deep Learning, Edge Detection, Image Processing

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

N/A

Scopus Q

N/A
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

2024 Innovations in Intelligent Systems and Applications Conference, ASYU 2024 -- 2024 Innovations in Intelligent Systems and Applications Conference, ASYU 2024 -- 16 October 2024 through 18 October 2024 -- Ankara -- 204562

Volume

Issue

Start Page

1

End Page

6
PlumX Metrics
Citations

Scopus : 1

Captures

Mendeley Readers : 4

SCOPUS™ Citations

1

checked on Feb 04, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.0

Sustainable Development Goals

SDG data could not be loaded because of an error. Please refresh the page or try again later.