Human Action Recognition Using Attention Based Lstm Network With Dilated Cnn Features

dc.contributor.author Muhammad, Khan
dc.contributor.author Mustaqeem
dc.contributor.author Ullah, Amin
dc.contributor.author Imran, Ali Shariq
dc.contributor.author Sajjad, Muhammad
dc.contributor.author Kıran, Mustafa Servet
dc.contributor.author de Albuquerque, Victor Hugo C.
dc.date.accessioned 2021-12-13T10:32:19Z
dc.date.available 2021-12-13T10:32:19Z
dc.date.issued 2021
dc.description.abstract Human action recognition in videos is an active area of research in computer vision and pattern recognition. Nowadays, artificial intelligence (AI) based systems are needed for human-behavior assessment and security purposes. The existing action recognition techniques are mainly using pre-trained weights of different AI architectures for the visual representation of video frames in the training stage, which affect the features' discrepancy determination, such as the distinction between the visual and temporal signs. To address this issue, we propose a bi-directional long short-term memory (BiLSTM) based attention mechanism with a dilated convolutional neural network (DCNN) that selectively focuses on effective features in the input frame to recognize the different human actions in the videos. In this diverse network, we use the DCNN layers to extract the salient discriminative features by using the residual blocks to upgrade the features that keep more information than a shallow layer. Furthermore, we feed these features into a BiLSTM to learn the long-term dependencies, which is followed by the attention mechanism to boost the performance and extract the additional high-level selective action related patterns and cues. We further use the center loss with Softmax to improve the loss function that achieves a higher performance in the video-based action classification. The proposed system is evaluated on three benchmarks, i.e., UCF11, UCF sports, and J-HMDB datasets for which it achieved a recognition rate of 98.3%, 99.1%, and 80.2%, respectively, showing 1%-3% improvement compared to the state-of-the-art (SOTA) methods. (C) 2021 Elsevier B.V. All rights reserved. en_US
dc.description.sponsorship ERCIM 'Alain Benoussan' Fellowship Programme [2019-40]; Brazilian National Council for Research and Development (CNPq)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPQ) [304315/2017-6, 430274/2018-1] en_US
dc.description.sponsorship This work was carried out during the tenure of an ERCIM 'Alain Benoussan' Fellowship Programme under the Contract 2019-40, Color and Visual Computing Lab at the Department of Computer Science, NTNU, Gjovik, Norway. The work of Victor Hugo C. de Albuquerque was supported in part by the Brazilian National Council for Research and Development (CNPq) under Grant 304315/2017-6 and Grant 430274/2018-1. en_US
dc.identifier.doi 10.1016/j.future.2021.06.045
dc.identifier.issn 0167-739X
dc.identifier.issn 1872-7115
dc.identifier.scopus 2-s2.0-85111316846
dc.identifier.uri https://doi.org/10.1016/j.future.2021.06.045
dc.identifier.uri https://hdl.handle.net/20.500.13091/1008
dc.language.iso en en_US
dc.publisher ELSEVIER en_US
dc.relation.ispartof FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Artificial Intelligence en_US
dc.subject Action Recognition en_US
dc.subject Attention Mechanism en_US
dc.subject Big Data en_US
dc.subject Dilated Convolutional Neural Network en_US
dc.subject Deep Bi-Directional Lstm en_US
dc.subject Multimedia Data Security en_US
dc.subject Big Data en_US
dc.subject Framework en_US
dc.subject Security en_US
dc.subject Internet en_US
dc.subject Machine en_US
dc.subject Fusion en_US
dc.subject System en_US
dc.subject Things en_US
dc.title Human Action Recognition Using Attention Based Lstm Network With Dilated Cnn Features en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Muhammad, Khan/0000-0003-4055-7412
gdc.author.scopusid 56651946700
gdc.author.scopusid 57212930354
gdc.author.scopusid 57195399776
gdc.author.scopusid 56109077100
gdc.author.scopusid 57215455402
gdc.author.scopusid 54403096500
gdc.author.scopusid 36239105500
gdc.author.wosid Muhammad, Khan/L-9059-2016
gdc.author.wosid , Mustaqeem/AAM-9396-2020
gdc.author.wosid de Albuquerque, Victor Hugo C./C-3677-2016
gdc.author.wosid Ullah, Amin/AAH-5034-2020
gdc.author.wosid Sannino, Giovanna/N-1319-2013
gdc.bip.impulseclass C2
gdc.bip.influenceclass C3
gdc.bip.popularityclass C2
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.endpage 830 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 820 en_US
gdc.description.volume 125 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W3173590174
gdc.identifier.wos WOS:000687315100009
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 169.0
gdc.oaire.influence 1.5816216E-8
gdc.oaire.isgreen false
gdc.oaire.keywords Deep bi-directional LSTM
gdc.oaire.keywords Multimedia data security
gdc.oaire.keywords Artificial intelligence
gdc.oaire.keywords Big data
gdc.oaire.keywords Attention mechanism
gdc.oaire.keywords Dilated convolutional neural network
gdc.oaire.keywords Action recognition
gdc.oaire.popularity 1.7388425E-7
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration International
gdc.openalex.fwci 18.80838413
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 174
gdc.plumx.crossrefcites 213
gdc.plumx.facebookshareslikecount 9
gdc.plumx.mendeley 167
gdc.plumx.scopuscites 241
gdc.scopus.citedcount 237
gdc.virtual.author Kıran, Mustafa Servet
gdc.wos.citedcount 173
relation.isAuthorOfPublication 1b4c0009-61df-4135-a8d5-ed32324e2787
relation.isAuthorOfPublication.latestForDiscovery 1b4c0009-61df-4135-a8d5-ed32324e2787

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S0167739X21002405-main.pdf
Size:
2.34 MB
Format:
Adobe Portable Document Format