Adrenal Tumor Segmentation on U-Net: a Study About Effect of Different Parameters in Deep Learning
| dc.contributor.author | Solak, Ahmet | |
| dc.contributor.author | Ceylan, Rahime | |
| dc.contributor.author | Bozkurt, Mustafa Alper | |
| dc.contributor.author | Cebeci, Hakan | |
| dc.contributor.author | Koplay, Mustafa | |
| dc.date.accessioned | 2023-12-26T07:52:32Z | |
| dc.date.available | 2023-12-26T07:52:32Z | |
| dc.date.issued | 2023 | |
| dc.description.abstract | Adrenal lesions refer to abnormalities or growths that occur in the adrenal glands, which are located on top of each kidney. These lesions can be benign or malignant and can affect the function of the adrenal glands. This paper presents a study on adrenal tumor segmentation using a modified U-Net model with various parameter selection strategies. The study investigates the effect of fine-tuning parameters, including k-fold values and batch sizes, on segmentation performance. Additionally, the study evaluates the effectiveness of different preprocessing techniques, such as Discrete Wavelet Transform (DWT), Contrast Limited Adaptive Histogram Equalization (CLAHE), and Image Fusion, in enhancing segmentation accuracy. The results show that the proposed model outperforms the original U-Net model, achieving the highest scores for Dice, Jaccard, sensitivity, and specificity scores of 0.631, 0.533, 0.579, and 0.998, respectively, on the T1-weighted dataset with DWT applied. These results highlight the importance of parameter selection and preprocessing techniques in improving the accuracy of adrenal tumor segmentation using deep learning. | en_US |
| dc.identifier.doi | 10.1142/S2196888823500161 | |
| dc.identifier.issn | 2196-8888 | |
| dc.identifier.issn | 2196-8896 | |
| dc.identifier.scopus | 2-s2.0-85177083598 | |
| dc.identifier.uri | https://doi.org/10.1142/S2196888823500161 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.13091/4925 | |
| dc.language.iso | en | en_US |
| dc.publisher | World Scientific Publ Co Pte Ltd | en_US |
| dc.relation.ispartof | Vietnam Journal of Computer Science | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Adrenal tumor | en_US |
| dc.subject | segmentation | en_US |
| dc.subject | U-Net | en_US |
| dc.subject | parameter analysis | en_US |
| dc.subject | deep learning | en_US |
| dc.subject | System | en_US] |
| dc.title | Adrenal Tumor Segmentation on U-Net: a Study About Effect of Different Parameters in Deep Learning | en_US |
| dc.type | Article | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | … | |
| gdc.author.scopusid | 57221815832 | |
| gdc.author.scopusid | 12244684600 | |
| gdc.author.scopusid | 57407810400 | |
| gdc.author.scopusid | 56033553000 | |
| gdc.author.scopusid | 55920818900 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | KTÜN | en_US |
| gdc.description.departmenttemp | [Solak, Ahmet; Ceylan, Rahime] Konya Tech Univ, Dept Elect Elect Engn, Konya, Turkiye; [Bozkurt, Mustafa Alper; Cebeci, Hakan; Koplay, Mustafa] Selcuk Univ, Fac Med, Dept Radiol, Konya, Turkiye | en_US |
| gdc.description.endpage | 135 | |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q3 | |
| gdc.description.startpage | 111 | |
| gdc.description.volume | 11 | |
| gdc.description.wosquality | Q3 | |
| gdc.identifier.openalex | W4387768621 | |
| gdc.identifier.wos | WOS:001104639000001 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 1.0 | |
| gdc.oaire.influence | 2.5884679E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Adrenal tumor | |
| gdc.oaire.keywords | parameter analysis | |
| gdc.oaire.keywords | Electronic computers. Computer science | |
| gdc.oaire.keywords | segmentation | |
| gdc.oaire.keywords | deep learning | |
| gdc.oaire.keywords | Information technology | |
| gdc.oaire.keywords | QA75.5-76.95 | |
| gdc.oaire.keywords | T58.5-58.64 | |
| gdc.oaire.keywords | U-Net | |
| gdc.oaire.popularity | 2.9441005E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 03 medical and health sciences | |
| gdc.oaire.sciencefields | 0302 clinical medicine | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 0.30905497 | |
| gdc.openalex.normalizedpercentile | 0.62 | |
| gdc.opencitations.count | 1 | |
| gdc.plumx.crossrefcites | 1 | |
| gdc.plumx.mendeley | 5 | |
| gdc.plumx.newscount | 1 | |
| gdc.plumx.scopuscites | 1 | |
| gdc.scopus.citedcount | 1 | |
| gdc.virtual.author | Solak, Ahmet | |
| gdc.virtual.author | Ceylan, Rahime | |
| gdc.wos.citedcount | 0 | |
| relation.isAuthorOfPublication | a80cd0ab-eecd-4cc3-a1a7-672336dcea64 | |
| relation.isAuthorOfPublication | db1f6849-0679-4c3f-8bb5-fcfb40beb531 | |
| relation.isAuthorOfPublication.latestForDiscovery | a80cd0ab-eecd-4cc3-a1a7-672336dcea64 |
