Adrenal Tumor Segmentation on U-Net: a Study About Effect of Different Parameters in Deep Learning

dc.contributor.author Solak, Ahmet
dc.contributor.author Ceylan, Rahime
dc.contributor.author Bozkurt, Mustafa Alper
dc.contributor.author Cebeci, Hakan
dc.contributor.author Koplay, Mustafa
dc.date.accessioned 2023-12-26T07:52:32Z
dc.date.available 2023-12-26T07:52:32Z
dc.date.issued 2023
dc.description.abstract Adrenal lesions refer to abnormalities or growths that occur in the adrenal glands, which are located on top of each kidney. These lesions can be benign or malignant and can affect the function of the adrenal glands. This paper presents a study on adrenal tumor segmentation using a modified U-Net model with various parameter selection strategies. The study investigates the effect of fine-tuning parameters, including k-fold values and batch sizes, on segmentation performance. Additionally, the study evaluates the effectiveness of different preprocessing techniques, such as Discrete Wavelet Transform (DWT), Contrast Limited Adaptive Histogram Equalization (CLAHE), and Image Fusion, in enhancing segmentation accuracy. The results show that the proposed model outperforms the original U-Net model, achieving the highest scores for Dice, Jaccard, sensitivity, and specificity scores of 0.631, 0.533, 0.579, and 0.998, respectively, on the T1-weighted dataset with DWT applied. These results highlight the importance of parameter selection and preprocessing techniques in improving the accuracy of adrenal tumor segmentation using deep learning. en_US
dc.identifier.doi 10.1142/S2196888823500161
dc.identifier.issn 2196-8888
dc.identifier.issn 2196-8896
dc.identifier.scopus 2-s2.0-85177083598
dc.identifier.uri https://doi.org/10.1142/S2196888823500161
dc.identifier.uri https://hdl.handle.net/20.500.13091/4925
dc.language.iso en en_US
dc.publisher World Scientific Publ Co Pte Ltd en_US
dc.relation.ispartof Vietnam Journal of Computer Science en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Adrenal tumor en_US
dc.subject segmentation en_US
dc.subject U-Net en_US
dc.subject parameter analysis en_US
dc.subject deep learning en_US
dc.subject System en_US]
dc.title Adrenal Tumor Segmentation on U-Net: a Study About Effect of Different Parameters in Deep Learning en_US
dc.type Article en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional
gdc.author.scopusid 57221815832
gdc.author.scopusid 12244684600
gdc.author.scopusid 57407810400
gdc.author.scopusid 56033553000
gdc.author.scopusid 55920818900
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department KTÜN en_US
gdc.description.departmenttemp [Solak, Ahmet; Ceylan, Rahime] Konya Tech Univ, Dept Elect Elect Engn, Konya, Turkiye; [Bozkurt, Mustafa Alper; Cebeci, Hakan; Koplay, Mustafa] Selcuk Univ, Fac Med, Dept Radiol, Konya, Turkiye en_US
gdc.description.endpage 135
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 111
gdc.description.volume 11
gdc.description.wosquality Q3
gdc.identifier.openalex W4387768621
gdc.identifier.wos WOS:001104639000001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.5884679E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Adrenal tumor
gdc.oaire.keywords parameter analysis
gdc.oaire.keywords Electronic computers. Computer science
gdc.oaire.keywords segmentation
gdc.oaire.keywords deep learning
gdc.oaire.keywords Information technology
gdc.oaire.keywords QA75.5-76.95
gdc.oaire.keywords T58.5-58.64
gdc.oaire.keywords U-Net
gdc.oaire.popularity 2.9441005E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 0.30905497
gdc.openalex.normalizedpercentile 0.62
gdc.opencitations.count 1
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 5
gdc.plumx.newscount 1
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.virtual.author Solak, Ahmet
gdc.virtual.author Ceylan, Rahime
gdc.wos.citedcount 0
relation.isAuthorOfPublication a80cd0ab-eecd-4cc3-a1a7-672336dcea64
relation.isAuthorOfPublication db1f6849-0679-4c3f-8bb5-fcfb40beb531
relation.isAuthorOfPublication.latestForDiscovery a80cd0ab-eecd-4cc3-a1a7-672336dcea64

Files