A Novel Study for Automatic Two-Class and Three-Class Covid-19 Severity Classification of Ct Images Using Eight Different Cnns and Pipeline Algorithm
| dc.contributor.author | Yaşar, Hüseyin | |
| dc.contributor.author | Ceylan, Murat | |
| dc.contributor.author | Cebeci, Hakan | |
| dc.contributor.author | Kılınçer, Abidin | |
| dc.contributor.author | Seher, Nusret | |
| dc.contributor.author | Kanat, Fikret | |
| dc.contributor.author | Koplay, Mustafa | |
| dc.date.accessioned | 2024-04-20T13:05:04Z | |
| dc.date.available | 2024-04-20T13:05:04Z | |
| dc.date.issued | 2023 | |
| dc.description.abstract | SARS-CoV-2 has caused a severe pandemic worldwide. This virus appeared at the end of 2019. This virus causes respiratory distress syndrome. Computed tomography (CT) imaging provides important radiological information in the diagnosis and clinical evaluation of pneumonia caused by bacteria or a virus. CT imaging is widely utilized in the identification and evaluation of COVID-19. It is an important requirement to establish diagnostic support systems using artificial intelligence methods to alleviate the workload of healthcare systems and radiologists due to the disease. In this context, an important study goal is to determine the clinical severity of the pneumonia caused by the disease. This is important for determining treatment procedures and the follow-up of a patient's condition. In the study, automatic COVID-19 severity classification was performed using three -class (mild, moderate, and severe) and two -class (nonsevere and severe). In the study, deep learning models were used for classification. Also, CT images were utilized as radiological images. | en_US |
| dc.identifier.doi | 10.14201/adcaij.28715 | |
| dc.identifier.issn | 2255-2863 | |
| dc.identifier.scopus | 2-s2.0-85188509912 | |
| dc.identifier.uri | https://doi.org/10.14201/adcaij.28715 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.13091/5369 | |
| dc.language.iso | en | en_US |
| dc.publisher | Ediciones Univ Salamanca | en_US |
| dc.relation.ispartof | Adcaij-Advances in Distributed Computing and Artificial Intelligence Journal | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | computed tomography (CT) | en_US |
| dc.subject | convolutional neural network (CNN) | en_US |
| dc.subject | COVID-19 | en_US |
| dc.subject | deep learning | en_US |
| dc.subject | severity | en_US |
| dc.title | A Novel Study for Automatic Two-Class and Three-Class Covid-19 Severity Classification of Ct Images Using Eight Different Cnns and Pipeline Algorithm | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | KANAT, Fikret/0000-0002-1912-0200 | |
| gdc.author.institutional | … | |
| gdc.author.scopusid | 56567916500 | |
| gdc.author.scopusid | 56276648900 | |
| gdc.author.scopusid | 56033553000 | |
| gdc.author.scopusid | 54398721900 | |
| gdc.author.scopusid | 57216731296 | |
| gdc.author.scopusid | 55884642900 | |
| gdc.author.scopusid | 55920818900 | |
| gdc.author.wosid | cebeci, hakan/E-4900-2015 | |
| gdc.author.wosid | KANAT, Fikret/KGL-1188-2024 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | KTÜN | en_US |
| gdc.description.departmenttemp | [Yasar, Huseyin] Minist Hlth Republ Turkey, Ankara, Turkiye; [Ceylan, Murat] Konya Tech Univ, Fac Engn & Nat Sci, Dept Elect & Elect Engn, Konya, Turkiye; [Cebeci, Hakan; Kilincer, Abidin; Seher, Nusret; Koplay, Mustafa] Selcuk Univ, Fac Med, Dept Radiol, Konya, Turkiye; [Kanat, Fikret] Selcuk Univ, Fac Med, Dept Chest Dis, Konya, Turkiye | en_US |
| gdc.description.issue | 1 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q3 | |
| gdc.description.startpage | e28715 | |
| gdc.description.volume | 12 | en_US |
| gdc.description.wosquality | Q3 | |
| gdc.identifier.openalex | W4392810441 | |
| gdc.identifier.wos | WOS:001185938400003 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 1.0 | |
| gdc.oaire.influence | 2.567395E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | convolutional neural network (CNN) | |
| gdc.oaire.keywords | COVID-19, deep learning | |
| gdc.oaire.keywords | severity | |
| gdc.oaire.keywords | computed tomography (CT) | |
| gdc.oaire.popularity | 2.8160931E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 03 medical and health sciences | |
| gdc.oaire.sciencefields | 0302 clinical medicine | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 0.30905497 | |
| gdc.openalex.normalizedpercentile | 0.64 | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 4 | |
| gdc.plumx.scopuscites | 2 | |
| gdc.scopus.citedcount | 2 | |
| gdc.virtual.author | Ceylan, Murat | |
| gdc.wos.citedcount | 2 | |
| relation.isAuthorOfPublication | 3ddb550c-8d12-4840-a8d4-172ab9dc9ced | |
| relation.isAuthorOfPublication.latestForDiscovery | 3ddb550c-8d12-4840-a8d4-172ab9dc9ced |
