A Novel Study for Automatic Two-Class and Three-Class Covid-19 Severity Classification of Ct Images Using Eight Different Cnns and Pipeline Algorithm

dc.contributor.author Yaşar, Hüseyin
dc.contributor.author Ceylan, Murat
dc.contributor.author Cebeci, Hakan
dc.contributor.author Kılınçer, Abidin
dc.contributor.author Seher, Nusret
dc.contributor.author Kanat, Fikret
dc.contributor.author Koplay, Mustafa
dc.date.accessioned 2024-04-20T13:05:04Z
dc.date.available 2024-04-20T13:05:04Z
dc.date.issued 2023
dc.description.abstract SARS-CoV-2 has caused a severe pandemic worldwide. This virus appeared at the end of 2019. This virus causes respiratory distress syndrome. Computed tomography (CT) imaging provides important radiological information in the diagnosis and clinical evaluation of pneumonia caused by bacteria or a virus. CT imaging is widely utilized in the identification and evaluation of COVID-19. It is an important requirement to establish diagnostic support systems using artificial intelligence methods to alleviate the workload of healthcare systems and radiologists due to the disease. In this context, an important study goal is to determine the clinical severity of the pneumonia caused by the disease. This is important for determining treatment procedures and the follow-up of a patient's condition. In the study, automatic COVID-19 severity classification was performed using three -class (mild, moderate, and severe) and two -class (nonsevere and severe). In the study, deep learning models were used for classification. Also, CT images were utilized as radiological images. en_US
dc.identifier.doi 10.14201/adcaij.28715
dc.identifier.issn 2255-2863
dc.identifier.scopus 2-s2.0-85188509912
dc.identifier.uri https://doi.org/10.14201/adcaij.28715
dc.identifier.uri https://hdl.handle.net/20.500.13091/5369
dc.language.iso en en_US
dc.publisher Ediciones Univ Salamanca en_US
dc.relation.ispartof Adcaij-Advances in Distributed Computing and Artificial Intelligence Journal en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject computed tomography (CT) en_US
dc.subject convolutional neural network (CNN) en_US
dc.subject COVID-19 en_US
dc.subject deep learning en_US
dc.subject severity en_US
dc.title A Novel Study for Automatic Two-Class and Three-Class Covid-19 Severity Classification of Ct Images Using Eight Different Cnns and Pipeline Algorithm en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id KANAT, Fikret/0000-0002-1912-0200
gdc.author.institutional
gdc.author.scopusid 56567916500
gdc.author.scopusid 56276648900
gdc.author.scopusid 56033553000
gdc.author.scopusid 54398721900
gdc.author.scopusid 57216731296
gdc.author.scopusid 55884642900
gdc.author.scopusid 55920818900
gdc.author.wosid cebeci, hakan/E-4900-2015
gdc.author.wosid KANAT, Fikret/KGL-1188-2024
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department KTÜN en_US
gdc.description.departmenttemp [Yasar, Huseyin] Minist Hlth Republ Turkey, Ankara, Turkiye; [Ceylan, Murat] Konya Tech Univ, Fac Engn & Nat Sci, Dept Elect & Elect Engn, Konya, Turkiye; [Cebeci, Hakan; Kilincer, Abidin; Seher, Nusret; Koplay, Mustafa] Selcuk Univ, Fac Med, Dept Radiol, Konya, Turkiye; [Kanat, Fikret] Selcuk Univ, Fac Med, Dept Chest Dis, Konya, Turkiye en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage e28715
gdc.description.volume 12 en_US
gdc.description.wosquality Q3
gdc.identifier.openalex W4392810441
gdc.identifier.wos WOS:001185938400003
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.567395E-9
gdc.oaire.isgreen true
gdc.oaire.keywords convolutional neural network (CNN)
gdc.oaire.keywords COVID-19, deep learning
gdc.oaire.keywords severity
gdc.oaire.keywords computed tomography (CT)
gdc.oaire.popularity 2.8160931E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 0.30905497
gdc.openalex.normalizedpercentile 0.64
gdc.opencitations.count 0
gdc.plumx.mendeley 4
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
gdc.virtual.author Ceylan, Murat
gdc.wos.citedcount 2
relation.isAuthorOfPublication 3ddb550c-8d12-4840-a8d4-172ab9dc9ced
relation.isAuthorOfPublication.latestForDiscovery 3ddb550c-8d12-4840-a8d4-172ab9dc9ced

Files