A Binary Social Spider Algorithm for Continuous Optimization Task

dc.contributor.author Baş, Emine
dc.contributor.author Ülker, Erkan
dc.date.accessioned 2021-12-13T10:23:54Z
dc.date.available 2021-12-13T10:23:54Z
dc.date.issued 2020
dc.description.abstract The social spider algorithm (SSA) is a new heuristic algorithm created on spider behaviors. The original study of this algorithm was proposed to solve continuous problems. In this paper, the binary version of SSA (binary SSA) is introduced to solve binary problems. Currently, there is insufficient focus on the binary version of SSA in the literature. The main part of the binary version is at the transfer function. The transfer function is responsible for mapping continuous search space to discrete search space. In this study, four of the transfer functions divided into two families, S-shaped and V-shaped, are evaluated. Thus, four different variations of binary SSA are formed as binary SSA-Tanh, binary SSA-Sigm, binary SSA-MSigm and binary SSA-Arctan. Two different techniques (SimSSA and LogicSSA) are developed at the candidate solution production schema in binary SSA. SimSSA is used to measure similarities between two binary solutions. With SimSSA, binary SSA's ability to discover new points in search space has been increased. Thus, binary SSA is able to find global optimum instead of local optimums. LogicSSA which is inspired by the logic gates and a popular method in recent years has been used to avoid local minima traps. By these two techniques, the exploration and exploitation capabilities of binary SSA in the binary search space are improved. Eighteen unimodal and multimodal standard benchmark optimization functions are employed to evaluate variations of binary SSA. To select the best variations of binary SSA, a comparative study is presented. The Wilcoxon signed-rank test has applied to the experimental results of variations of binary SSA. Compared to well-known evolutionary and recently developed methods in the literature, the variations of binary SSA performance is quite good. In particular, binary SSA-Tanh and binary SSA-Arctan variations of binary SSA showed superior performance. en_US
dc.identifier.doi 10.1007/s00500-020-04718-w
dc.identifier.issn 1432-7643
dc.identifier.issn 1433-7479
dc.identifier.scopus 2-s2.0-85078840510
dc.identifier.uri https://doi.org/10.1007/s00500-020-04718-w
dc.identifier.uri https://hdl.handle.net/20.500.13091/236
dc.language.iso en en_US
dc.publisher SPRINGER en_US
dc.relation.ispartof SOFT COMPUTING en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Binary Optimization en_US
dc.subject Social Spider Algorithm en_US
dc.subject Transfer Function en_US
dc.subject Particle Swarm Optimization en_US
dc.subject Selection en_US
dc.subject Intelligence en_US
dc.title A Binary Social Spider Algorithm for Continuous Optimization Task en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Ulker, Erkan/0000-0003-4393-9870
gdc.author.scopusid 57213265310
gdc.author.scopusid 23393979800
gdc.author.wosid Ulker, Erkan/ABA-5846-2020
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.endpage 12979 en_US
gdc.description.issue 17 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 12953 en_US
gdc.description.volume 24 en_US
gdc.description.wosquality Q3
gdc.identifier.openalex W3004089147
gdc.identifier.wos WOS:000510297200001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 17.0
gdc.oaire.influence 3.3149354E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Social spider algorithm
gdc.oaire.keywords Transfer function
gdc.oaire.keywords Binary optimization
gdc.oaire.popularity 1.4809699E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 3.08405052
gdc.openalex.normalizedpercentile 0.92
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 19
gdc.plumx.crossrefcites 4
gdc.plumx.facebookshareslikecount 1
gdc.plumx.mendeley 11
gdc.plumx.scopuscites 24
gdc.scopus.citedcount 24
gdc.virtual.author Ülker, Erkan
gdc.virtual.author Baş, Emine
gdc.wos.citedcount 20
relation.isAuthorOfPublication ecd5c807-37b2-4c20-a42b-133bc166cbc0
relation.isAuthorOfPublication 86ee6f35-5a88-4538-8831-6b12c57a1ee9
relation.isAuthorOfPublication.latestForDiscovery ecd5c807-37b2-4c20-a42b-133bc166cbc0

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
s00500-020-04718-w.pdf
Size:
2.98 MB
Format:
Adobe Portable Document Format