A Binary Artificial Bee Colony Algorithm and Its Performance Assessment

Loading...
Thumbnail Image

Date

2021

Authors

Kıran, Mustafa Servet

Journal Title

Journal ISSN

Volume Title

Publisher

PERGAMON-ELSEVIER SCIENCE LTD

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 10%
Influence
Top 10%
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

Artificial bee colony algorithm, ABC for short, is a swarm-based optimization algorithm proposed for solving continuous optimization problems. Due to its simple but effective structure, some binary versions of the algorithm have been developed. In this study, we focus on modification of its xor-based binary version, called as binABC. The solution update rule of basic ABC is replaced with a xor logic gate in binABC algorithm, and binABC works on discretely-structured solution space. The rest of components in binABC are the same as with the basic ABC algorithm. In order to improve local search capability and convergence characteristics of binABC, a stigmergic behavior-based update rule for onlooker bees of binABC and extended version of xor-based update rule are proposed in the present study. The developed version of binABC is applied to solve a modern benchmark problem set (CEC2015). To validate the performance of proposed algorithm, a series of comparisons are conducted on this problem set. The proposed algorithm is first compared with the basic ABC and binABC on CEC2015 set. After its performance validation, six binary versions of ABC algorithm are considered for comparison of the algorithms, and a comprehensive comparison among the state-of-art variants of swarm intelligence or evolutionary computation algorithms is conducted on this set of functions. Finally, an uncapacitated facility location problem set, a pure binary optimization problem, is considered for the comparison of the proposed algorithm and binary variants of ABC algorithm. The experimental results and comparisons show that the proposed algorithm is successful and effective in solving binary optimization problems as its basic version in solving continuous optimization problems.

Description

Keywords

Artificial Bee Colony, Binary Optimization, Xor Logic Gate, Stigmergy, Optimization, Operator

Turkish CoHE Thesis Center URL

Fields of Science

0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology

Citation

WoS Q

Q1

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
22

Source

EXPERT SYSTEMS WITH APPLICATIONS

Volume

175

Issue

Start Page

114817

End Page

PlumX Metrics
Citations

CrossRef : 17

Scopus : 32

Captures

Mendeley Readers : 20

SCOPUS™ Citations

32

checked on Feb 03, 2026

Web of Science™ Citations

31

checked on Feb 03, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
3.24538223

Sustainable Development Goals

SDG data is not available