Designing of High Voltage Cable Bonding With Intelligence Algorithms To Avoid Cable Insulation Faults and Electroshock in High Voltage Lines

No Thumbnail Available

Date

2023

Authors

Akbal, B.

Journal Title

Journal ISSN

Volume Title

Publisher

University of Kuwait

Open Access Color

GOLD

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

Insulation faults are major problems in high-voltage cable lines. The major factors in insulation faults are the harmonic currents and the metal sheath voltage (MV) that occur on the metal sheath of cables. MV and harmonic distortion should be minimized to prevent insulation faults. Thus, sectional solid bonding with different grounding resistance (SSBr) methods has been developed as a new bonding method for minimizing harmonic current and MV. In addition, SSBr should be optimized by optimizing the minimum MV and harmonic distortion rate of high-voltage cables. Inertia-weighted particle swarm optimization (iPSO), particle swarm optimization (PSO), genetic algorithm (GA), and differential evolution algorithm (DEA) are used for the optimization of SSBr, and three groups of prediction methods are used separately as objective functions of the optimization methods to determine the minimum MV and harmonic distortion; these groups include neural networks, hybrid neural networks, and regression methods. Hybrid neural network with inertia-weighted particle swarm optimization (H-iPSO), linear regression, and feedforward backpropagation neural networks were selected from their groups according to training errors. Solid bonding method, which is widely used for bonding high-voltage cables, is simulated in this study. When solid bonding is used, the maximum harmonic distortion rate is measured as 8.15 %, and the maximum MV is measured as 1086 V. When H-iPSO is used as the prediction method and PSO is used as the optimization method, the maximum harmonic distortion rate is measured as 5.28 %, and the maximum MV is measured as 57 V. Both insulation fault and electroshock can be prevented by the optimized SSBr method. © 2023 University of Kuwait. All rights reserved.

Description

Keywords

High Voltage Cable Bonding, Hybrid Artificial Neural Network, Optimization

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q2

Scopus Q

Q2
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Journal of Engineering Research (Kuwait)

Volume

11

Issue

2

Start Page

158

End Page

172
PlumX Metrics
Citations

Scopus : 0

Captures

Mendeley Readers : 3

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.0

Sustainable Development Goals

6

CLEAN WATER AND SANITATION
CLEAN WATER AND SANITATION Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

10

REDUCED INEQUALITIES
REDUCED INEQUALITIES Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

14

LIFE BELOW WATER
LIFE BELOW WATER Logo

16

PEACE, JUSTICE AND STRONG INSTITUTIONS
PEACE, JUSTICE AND STRONG INSTITUTIONS Logo