Discrete Tree Seed Algorithm for Urban Land Readjustment

Loading...
Thumbnail Image

Date

2022

Authors

Koç, İsmail
Babaoğlu, İsmail

Journal Title

Journal ISSN

Volume Title

Publisher

Pergamon-Elsevier Science Ltd

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 10%
Influence
Top 10%
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

Land readjustment and redistribution (LR) is an important approach used to realize development plans by converting rural lands to urban land and also providing urban infrastructure. The LR problem, which is a complex challenging real-world problem, is a discrete optimization problem because its structure is similar to TSP (Traveling Salesman Problem) and scheduling problems which are combinatorial optimization problems. Since classical mathematical methods are insufficient for solving NP (Nondeterministic Polynomial) optimization problems due to time limitations, meta-heuristic optimization algorithms are commonly utilized for solving these kinds of problems. In this paper, meta-heuristic algorithms including genetic, particle swarm, differential evolution, artificial bee, and tree seed algorithms are utilized for solving LR problems. The stated meta-heuristic algorithms are used by applying spatial-based crossover and mutation operators depending upon the LR problem on each algorithm. Moreover, a synthetic dataset is used to ensure that the quality of the solution obtained is acceptable to everyone, to prove an optimal solution easily. By utilizing the suggested spatial-based crossover and mutation operators, finding the ideal solution is aimed using the synthetic dataset. In addition, five different modifications on TSA (Tree-Seed Algorithm) are performed and used to solve LR problems. All the modified versions of TSA are carried out only by changing the mechanism of seed reproduction. The novel TSA approaches are respectively named as tcTSA (tournament current), tbTSA (tournament best), pbTSA (personal-best based), t2TSA (double tournament), and elTSA (elitism based). In the experimental studies, the hybrid approach, which includes the crossover and mutation operators, is successfully applied in all of the algorithms under equal conditions for a fair comparison. According to experimental results performed using the dataset, it can be clearly stated that especially t2TSA outperforms all the algorithms in terms of performance and time.

Description

Keywords

Swarm intelligence algorithms, Evolutionary algorithms, Hybrid approach, Spatial-based crossover and mutation operators, Efficient TSA, Urban land readjustment, Optimization, Tool

Turkish CoHE Thesis Center URL

Fields of Science

0211 other engineering and technologies, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology

Citation

WoS Q

Q1

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
15

Source

Engineering Applications of Artificial Intelligence

Volume

112

Issue

Start Page

104783

End Page

PlumX Metrics
Citations

Scopus : 17

Captures

Mendeley Readers : 24

SCOPUS™ Citations

17

checked on Feb 03, 2026

Web of Science™ Citations

15

checked on Feb 03, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
2.0949121

Sustainable Development Goals

2

ZERO HUNGER
ZERO HUNGER Logo

6

CLEAN WATER AND SANITATION
CLEAN WATER AND SANITATION Logo

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo