A 3d U-Net Based on Early Fusion Model: Improvement, Comparative Analysis With State-Of Models and Fine-Tuning

dc.contributor.author Kayhan, Beyza
dc.contributor.author Uymaz, Sait Ali
dc.date.accessioned 2024-10-10T16:05:54Z
dc.date.available 2024-10-10T16:05:54Z
dc.date.issued 2024
dc.description.abstract Multi-organ segmentation is the process of identifying and separating multiple organs in medical images. This segmentation allows for the detection of structural abnormalities by examining the morphological structure of organs. Carrying out the process quickly and precisely has become an important issue in today's conditions. In recent years, researchers have used various technologies for the automatic segmentation of multiple organs. In this study, improvements were made to increase the multi-organ segmentation performance of the 3D U-Net based fusion model combining HSV and grayscale color spaces and compared with state-of-the-art models. Training and testing were performed on the MICCAI 2015 dataset published at Vanderbilt University, which contains 3D abdominal CT images in NIfTI format. The model's performance was evaluated using the Dice similarity coefficient. In the tests, the liver organ showed the highest Dice score. Considering the average Dice score of all organs, and comparing it with other models, it has been observed that the fusion approach model yields promising results. en_US
dc.description.sponsorship and supervised the project. en_US
dc.identifier.doi 10.36306/konjes.1404420
dc.identifier.issn 2667-8055
dc.identifier.issn 2147-9364
dc.identifier.uri https://doi.org/10.36306/konjes.1404420
dc.identifier.uri https://search.trdizin.gov.tr/tr/yayin/detay/1264102
dc.identifier.uri https://hdl.handle.net/20.500.13091/6369
dc.language.iso en en_US
dc.publisher Konya Teknik Univ en_US
dc.relation.ispartof Konya Journal of Engineering Sciences en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Computed Tomograph en_US
dc.subject Multi Organ Segmentation en_US
dc.subject Deep Learning en_US
dc.subject Fusion Model en_US
dc.subject U-Net en_US
dc.subject Segmentation en_US
dc.title A 3d U-Net Based on Early Fusion Model: Improvement, Comparative Analysis With State-Of Models and Fine-Tuning en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department KTÜN en_US
gdc.description.departmenttemp [Kayhan, Beyza; Uymaz, Sait Ali] Konya Tech Univ, Engn & Nat Sci Fac, Comp Engn Dept, Konya, Turkiye en_US
gdc.description.endpage 686
gdc.description.issue 3 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 671
gdc.description.volume 12 en_US
gdc.description.wosquality Q4
gdc.identifier.openalex W4402114534
gdc.identifier.trdizinid 1264102
gdc.identifier.wos WOS:001312999000006
gdc.index.type WoS
gdc.index.type TR-Dizin
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Computed Tomograph;Multi Organ Segmentation;Deep Learning;Fusion Model;U-Net
gdc.oaire.keywords Biyomedikal Görüntüleme
gdc.oaire.keywords Biomedical Imaging
gdc.oaire.popularity 2.3737945E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.26
gdc.opencitations.count 0
gdc.virtual.author Uymaz, Sait Ali
gdc.virtual.author Kayhan, Beyza
gdc.wos.citedcount 0
relation.isAuthorOfPublication 83ffad2c-51a1-41f6-8ede-6d95ca8e9ac0
relation.isAuthorOfPublication 7647c621-4d38-48b2-8597-b1ed982e88da
relation.isAuthorOfPublication.latestForDiscovery 83ffad2c-51a1-41f6-8ede-6d95ca8e9ac0

Files