Reconstruction of Flow Field With Missing Experimental Data of a Circular Cylinder Via Machine Learning Algorithm

dc.contributor.author Aksoy, Muharrem Hilmi
dc.contributor.author Goktepeli, Ilker
dc.contributor.author İspir, Murat
dc.contributor.author Cakan, Abdullah
dc.date.accessioned 2023-12-26T07:52:32Z
dc.date.available 2023-12-26T07:52:32Z
dc.date.issued 2023
dc.description.abstract In this study, artificial neural networks (ANNs) have been implemented to recover missing data from the particle image velocimetry (PIV), providing quantitative measurements of velocity fields. Due to laser reflection or lower intensity of particles in the interrogation area, the reconstruction of erroneous velocity vectors is required. Therefore, the distribution of time-averaged and normalized flow characteristics around a circular cylinder has been demonstrated as streamwise and cross-stream velocities at Re = 8000. These velocity components have been given for different regions at x/D = 0.5, x/D = 1.25, x/D = 2, and y/D = 0. These stations have been chosen to estimate missing data for near-wake, mid-wake, far-wake, and symmetry regions. The missing data ratios (A*) for 0.5 <= x/D <= 2 are A* = 3.5%, 7%, and 10%. In addition, these values are A* = 4%, 8%, and 12% for y/D = 0, while A* = 7.5% for the shaded region. The increment of area positively affects the estimation results for near-wake and mid-wake regions. Moreover, the errors tend to decrease by moving away from the body. At y/D = 0, increasing the area negatively influences the prediction of the results. The mean velocity profiles of predicted and experimental data have also been compared. The missing data have been predicted with a maximum percentage error of 3.63% for horizontal stations. As a result, the ANN model has been recommended to reconstruct PIV data. en_US
dc.description.sponsorship All authors are thankful to Konya Technical University Faculty of Engineering and Natural Sciences for providing the laboratory facilities for the experimental studies.; Konya Technical University Faculty of Engineering and Natural Sciences en_US]
dc.description.sponsorship All authors are thankful to Konya Technical University Faculty of Engineering and Natural Sciences for providing the laboratory facilities for the experimental studies. en_US]
dc.identifier.doi 10.1063/5.0176637
dc.identifier.issn 1070-6631
dc.identifier.issn 1089-7666
dc.identifier.scopus 2-s2.0-85177877485
dc.identifier.uri https://doi.org/10.1063/5.0176637
dc.identifier.uri https://hdl.handle.net/20.500.13091/4929
dc.language.iso en en_US
dc.publisher Aip Publishing en_US
dc.relation.ispartof Physics of Fluids en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Vortex Formation en_US]
dc.subject Forced System en_US]
dc.subject Convection en_US]
dc.subject Scour en_US]
dc.title Reconstruction of Flow Field With Missing Experimental Data of a Circular Cylinder Via Machine Learning Algorithm en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional
gdc.author.scopusid 55823803400
gdc.author.scopusid 57194015600
gdc.author.scopusid 58193831500
gdc.author.scopusid 56297944600
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department KTÜN en_US
gdc.description.departmenttemp [Aksoy, Muharrem Hilmi; Goktepeli, Ilker; Ispir, Murat; Cakan, Abdullah] Konya Tech Univ, Dept Mech Engn, Konya, Turkiye; [Cakan, Abdullah] Virginia Polytech Inst & State Univ, Grad Dept Ind & Syst Engn, Blacksburg, VA 24061 USA en_US
gdc.description.issue 11 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 35 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W4388827102
gdc.identifier.wos WOS:001106420800003
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 6.0
gdc.oaire.influence 2.671867E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 5.8411103E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0103 physical sciences
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration International
gdc.openalex.fwci 3.11970161
gdc.openalex.normalizedpercentile 0.91
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 4
gdc.plumx.mendeley 9
gdc.plumx.scopuscites 7
gdc.scopus.citedcount 7
gdc.virtual.author Aksoy, Muharrem Hilmi
gdc.virtual.author İspir, Murat
gdc.virtual.author Göktepeli, İlker
gdc.virtual.author Çakan, Abdullah
gdc.wos.citedcount 7
relation.isAuthorOfPublication 71cdeba0-ed5a-451d-9e38-beec3675dda5
relation.isAuthorOfPublication f8622bac-1f25-4c77-900a-84273566a52a
relation.isAuthorOfPublication da0b6cf7-9f76-4d9c-bf05-57e927a6a201
relation.isAuthorOfPublication c4f8eff6-c5c8-4ca8-96a7-9e5217fb08f4
relation.isAuthorOfPublication.latestForDiscovery 71cdeba0-ed5a-451d-9e38-beec3675dda5

Files