Preparation and Characterization of the Mmt@fe<sub>3</Sub>o<sub>4< Nanocomposite for Catalytic Degradation of Methyl Yellow: Reaction Parameters and Mechanism Based on the Artificial Neuron Network

No Thumbnail Available

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Amer Chemical Soc

Open Access Color

GOLD

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

The montmorillonite@iron oxide@silver (MMT@Fe3O4@Ag) nanocomposite, which is recyclable and exhibits high catalytic activity, was evaluated for the degradation of methyl yellow (MY), a carcinogenic azo dye. For this purpose, MMT@Fe3O4 was first synthesized via the coprecipitation method and then Ag was doped to MMT@Fe3O4 via the chemical reduction method. MMT, MMT@Fe3O4, and MMT@Fe3O4@Ag were characterized by various techniques including scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, vibrating sample magnetometer, and thermal gravimetric analysis. The results illustrated that MMT@Fe3O4@Ag exhibited a higher catalytic ability than MMT@Fe3O4 toward decolorization of MY with a degradation efficiency of 100% in 10 min at pH 7.1 in the presence of sodium borohydride (NaBH4). Further, some parameters like the amount of NaBH4, initial dye concentration, and pH were also studied to determine optimum reaction conditions. MMT@Fe3O4@Ag could be easily separated and recycled from the reaction medium using an external magnet. Thus, the Ag-doped MMT@Fe3O4 nanocomposite proved to have good catalytic activity, high MY degradation rate and reusability, and easy separation and simple synthesis method. These properties make it a promising catalyst for the treatment of wastewater containing organic pollutants. In addition, artificial neural network (ANN) simulation, which is a mathematical model with an artificial intelligence algorithm, was used for the degradation process. This model was evaluated with the parameters used in the experiment as the input and output layers. Last, the degradation of MY with the synthesized catalyst into different products was demonstrated by high-performance liquid chromatography (HPLC) analysis.

Description

Keywords

[No Keyword Available], Chemistry, QD1-999

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q2

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

ACS Omega

Volume

10

Issue

1

Start Page

134

End Page

146
PlumX Metrics
Citations

Scopus : 0

PubMed : 1

Captures

Mendeley Readers : 4

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.0

Sustainable Development Goals

1

NO POVERTY
NO POVERTY Logo

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

6

CLEAN WATER AND SANITATION
CLEAN WATER AND SANITATION Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo

13

CLIMATE ACTION
CLIMATE ACTION Logo