Investigation of Plastic Hinge Length in High-Ductility Reinforced Concrete Shear Walls
No Thumbnail Available
Date
2024
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Pontificia Univ Catolica Chile, Escuela Construccion Civil
Open Access Color
Green Open Access
No
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
In this study, the plastic hinge lengths of reinforced concrete (R/C) cantilever shear walls were analytically determined considering various design parameters. Nonlinear static (Pushover) analyses were conducted on R/C shear wall models and their nonlinear behavior was examined using ABAQUS software. In the study, 72 shear wall models with different parameters were analyzed under the influence of vertical and horizontal loads. Parameters whose effects on plastic hinge length were investigated height/length ratio (Hw/Lw), axial load ratio (N/No), and horizontal web reinforcement ratio (rho sh). The load-displacement graphs of the modelled shear walls were obtained. The plastic hinge height of shear walls was determined according to the heights of the deformations in the concrete and longitudinal steel reinforcement in the section when the shear walls lateral load decreased by 15%. The analytical plastic hinge lengths (Lpz) were determined with respect to the location of the yield occurred at the longitudinal steel reinforcement of the shear wall. The observed plastic hinge lengths (Lp) were determined based on the height of observed the crush as of the foundation top level in the concrete shear wall model. The relationship between the findings of this study and empirical formulas in the literature was determined. It was determined that there is greater closeness between the values obtained from empirical formulas in the literature and the observed plastic hinge length values. It was observed that the plastic hinge length generally increases as the shear span increases. It was observed that the change in rho sh was not a very effective parameter in plastic hinge formation. As the N/No decreases, the plastic hinge length values generally increase. The Lp/Lpz ratio varied within the range of 0.150.50. In addition to ductility (mu) values were determined by using the displacements determined according to both the crushing occurred in the shear wall concrete and the yield observed in the steel reinforcement. The observed that the ductility value depends more on Hw/Lw ratio as N/No ratio decreases.
Description
Keywords
Earthquake, Failure, Plastic Hinge, Finite Elements, Shear Wall
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
Q3
Scopus Q
N/A

OpenCitations Citation Count
N/A
Source
Revista de la construcción
Volume
23
Issue
2
Start Page
177
End Page
202
PlumX Metrics
Citations
Scopus : 1
Captures
Mendeley Readers : 4
SCOPUS™ Citations
1
checked on Feb 03, 2026
Web of Science™ Citations
1
checked on Feb 03, 2026
Google Scholar™

OpenAlex FWCI
0.49093966
Sustainable Development Goals
4
QUALITY EDUCATION

6
CLEAN WATER AND SANITATION

9
INDUSTRY, INNOVATION AND INFRASTRUCTURE


