Investigation of Plastic Hinge Length in High-Ductility Reinforced Concrete Shear Walls

No Thumbnail Available

Date

2024

Authors

Journal Title

Journal ISSN

Volume Title

Publisher

Pontificia Univ Catolica Chile, Escuela Construccion Civil

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

In this study, the plastic hinge lengths of reinforced concrete (R/C) cantilever shear walls were analytically determined considering various design parameters. Nonlinear static (Pushover) analyses were conducted on R/C shear wall models and their nonlinear behavior was examined using ABAQUS software. In the study, 72 shear wall models with different parameters were analyzed under the influence of vertical and horizontal loads. Parameters whose effects on plastic hinge length were investigated height/length ratio (Hw/Lw), axial load ratio (N/No), and horizontal web reinforcement ratio (rho sh). The load-displacement graphs of the modelled shear walls were obtained. The plastic hinge height of shear walls was determined according to the heights of the deformations in the concrete and longitudinal steel reinforcement in the section when the shear walls lateral load decreased by 15%. The analytical plastic hinge lengths (Lpz) were determined with respect to the location of the yield occurred at the longitudinal steel reinforcement of the shear wall. The observed plastic hinge lengths (Lp) were determined based on the height of observed the crush as of the foundation top level in the concrete shear wall model. The relationship between the findings of this study and empirical formulas in the literature was determined. It was determined that there is greater closeness between the values obtained from empirical formulas in the literature and the observed plastic hinge length values. It was observed that the plastic hinge length generally increases as the shear span increases. It was observed that the change in rho sh was not a very effective parameter in plastic hinge formation. As the N/No decreases, the plastic hinge length values generally increase. The Lp/Lpz ratio varied within the range of 0.150.50. In addition to ductility (mu) values were determined by using the displacements determined according to both the crushing occurred in the shear wall concrete and the yield observed in the steel reinforcement. The observed that the ductility value depends more on Hw/Lw ratio as N/No ratio decreases.

Description

Keywords

Earthquake, Failure, Plastic Hinge, Finite Elements, Shear Wall

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q3

Scopus Q

N/A
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Revista de la construcción

Volume

23

Issue

2

Start Page

177

End Page

202
PlumX Metrics
Citations

Scopus : 1

Captures

Mendeley Readers : 4

SCOPUS™ Citations

1

checked on Feb 03, 2026

Web of Science™ Citations

1

checked on Feb 03, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.49093966

Sustainable Development Goals

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

6

CLEAN WATER AND SANITATION
CLEAN WATER AND SANITATION Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo