Spatial Pyramid Pooling in Deep Convolutional Networks for Automatic Tuberculosis Diagnosis

dc.contributor.author Msonda, Pike
dc.contributor.author Uymaz, Sait Ali
dc.contributor.author Karaağaç, Seda Soğukpınar
dc.date.accessioned 2021-12-13T10:32:19Z
dc.date.available 2021-12-13T10:32:19Z
dc.date.issued 2020
dc.description.abstract In recent decades, automatic diagnosis using machine-learning techniques have been the focus of research. Mycobacterium Tuberculosis (TB) is a deadly disease that has plagued most developing countries presents a problem that can be tackled by automatic diagnosis. The World Health Organization (WHO) set years 2030 and 2035 as milestones for a significant reduction in new infections and deaths although lack of well-trained professionals and insufficient or fragile public health systems (in developing countries) are just some of the major factors that have slowed the eradication of the TB endemic. Deep convolutional neural networks (DCNNs) have demonstrated remarkable results across problem domains dealing with grid-like data (i.e., images and videos). Traditionally, a methodology for detecting TB is through radiology combined with previous success DCNN have achieved in image classification makes them the perfect candidate to classify Chest X-Ray (CXR) images. In this study, we propose three types of DCNN trained using two public datasets and another new set which we collected from Konya Education and Research Hospital, Konya, Turkey. Also, the DCNN architectures were integrated with an extra layer called Spatial Pyramid Pooling (SPP) a methodology that equips convolutional neural networks with the ability for robust feature pooling by using spatial bins. The result indicates the potential for an automated system to diagnose tuberculosis with accuracies above a radiologist professional. en_US
dc.description.sponsorship Coordinators of Scientific Research Projects of Konya Technical University [191013018] en_US
dc.description.sponsorship This work was financially supported by the Coordinators of Scientific Research Projects of Konya Technical University (P.N.: 191013018). en_US
dc.identifier.doi 10.18280/ts.370620
dc.identifier.issn 0765-0019
dc.identifier.issn 1958-5608
dc.identifier.scopus 2-s2.0-85099781761
dc.identifier.uri https://doi.org/10.18280/ts.370620
dc.identifier.uri https://hdl.handle.net/20.500.13091/1006
dc.language.iso en en_US
dc.publisher INT INFORMATION & ENGINEERING TECHNOLOGY ASSOC en_US
dc.relation.ispartof TRAITEMENT DU SIGNAL en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject automated diagnosis en_US
dc.subject deep convolutional neural networks en_US
dc.subject image classification en_US
dc.subject spatial pyramid pooling en_US
dc.subject tuberculosis en_US
dc.title Spatial Pyramid Pooling in Deep Convolutional Networks for Automatic Tuberculosis Diagnosis en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 57221681734
gdc.author.scopusid 56572779600
gdc.author.scopusid 57221683361
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.endpage 1084 en_US
gdc.description.issue 6 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1075 en_US
gdc.description.volume 37 en_US
gdc.description.wosquality Q4
gdc.identifier.openalex W3120604872
gdc.identifier.wos WOS:000605984500020
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype BRONZE
gdc.oaire.diamondjournal false
gdc.oaire.impulse 21.0
gdc.oaire.influence 4.2389603E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.9615775E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 3.26859588
gdc.openalex.normalizedpercentile 0.93
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 30
gdc.plumx.mendeley 181
gdc.plumx.scopuscites 39
gdc.scopus.citedcount 38
gdc.virtual.author Uymaz, Sait Ali
gdc.wos.citedcount 30
relation.isAuthorOfPublication 83ffad2c-51a1-41f6-8ede-6d95ca8e9ac0
relation.isAuthorOfPublication.latestForDiscovery 83ffad2c-51a1-41f6-8ede-6d95ca8e9ac0

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
37.06_20.pdf
Size:
1.58 MB
Format:
Adobe Portable Document Format