Multi-View Thermal Breast Imaging for Malignancy Detection: Performance Benchmarking of CNN, Transformer, and Involution Architectures
| dc.contributor.author | Cihan, M. | |
| dc.contributor.author | Ceylan, M. | |
| dc.date.accessioned | 2025-12-24T21:39:57Z | |
| dc.date.available | 2025-12-24T21:39:57Z | |
| dc.date.issued | 2026 | |
| dc.description | Niramai Health Analytix Pvt Ltd. | en_US |
| dc.description.abstract | Breast cancer screening demands accurate, non-invasive, low-cost tools. Infrared thermography is radiation-free and portable, but its utility hinges on robust computer-aided diagnosis (CAD). We benchmark three deep-learning families for static multi-view breast thermography—CNNs, Transformers, and an involution-based model (HarmonyNet-Lite). Experiments use the Breast Thermography dataset (119 patients; 476 manually segmented ROIs from anterior/oblique views). A compact pipeline performs ROI segmentation, RGB conversion, normalization, resizing, and moderate data augmentation; class imbalance is handled with minority oversampling and class-weighted loss. Evaluation follows patient-stratified five-fold cross-validation. HarmonyNet-Lite yields the best results: accuracy 87.47 ± 2.99%, recall 93.33 ± 2.13%, F1 68.43 ± 8.75%, and precision 54.23 ± 8.94%, indicating high sensitivity with an acceptable trade-off in precision for screening. Among CNNs, ResNet50 is strongest (85.59 ± 3.37%; F1 63.16 ± 3.87%), followed by InceptionV3 (83.38 ± 1.41%; F1 59.99 ± 6.72%), while DenseNet121 lags (79.25 ± 2.98%; F1 52.38 ± 5.62%). Transformer performance is mixed: ViT-Tiny is competitive (84.59 ± 4.23%; F1 59.46 ± 4.68%), whereas Swin-Tiny trails (81.30 ± 2.32%; F1 57.14 ± 4.44%) due to lower precision. Despite using only 0.14 M parameters, HarmonyNet-Lite outperforms heavier CNNs (ResNet50: 23.59 M; InceptionV3: 21.81 M) and lighter Transformers (ViT-Tiny: 2.84 M; Swin-Tiny: 11.78 M), demonstrating that content-adaptive, spatially aware involution operators efficiently capture fine thermal gradients. These findings position HarmonyNet-Lite as a strong, deployable CAD candidate. Future work will pursue multi-center validation, automated segmentation, multi-class labeling, hybrid involution–attention/multimodal models, and controlled GAN-based augmentation to mitigate data scarcity. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026. | en_US |
| dc.identifier.doi | 10.1007/978-3-032-10990-3_2 | |
| dc.identifier.isbn | 9789819698936 | |
| dc.identifier.isbn | 9789819698042 | |
| dc.identifier.isbn | 9789819698110 | |
| dc.identifier.isbn | 9789819698905 | |
| dc.identifier.isbn | 9783032004949 | |
| dc.identifier.isbn | 9789819512324 | |
| dc.identifier.isbn | 9783032026019 | |
| dc.identifier.isbn | 9783032008909 | |
| dc.identifier.isbn | 9783031915802 | |
| dc.identifier.isbn | 9789819698141 | |
| dc.identifier.issn | 0302-9743 | |
| dc.identifier.scopus | 2-s2.0-105022979434 | |
| dc.identifier.uri | https://doi.org/10.1007/978-3-032-10990-3_2 | |
| dc.identifier.uri | https://hdl.handle.net/123456789/12770 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer Science and Business Media Deutschland GmbH | en_US |
| dc.relation.ispartof | Lecture Notes in Computer Science -- 4th International Conference on Artificial Intelligence over Infrared Images for Medical Applications, AIIIMA 2025 -- 2025-11-15 through 2025-11-15 -- Virtual, Online -- 343649 | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Breast Thermography | en_US |
| dc.subject | Deep Learning | en_US |
| dc.subject | Harmonynet-Lite | en_US |
| dc.title | Multi-View Thermal Breast Imaging for Malignancy Detection: Performance Benchmarking of CNN, Transformer, and Involution Architectures | en_US |
| dc.type | Conference Object | en_US |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 57226111647 | |
| gdc.author.scopusid | 56276648900 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::conference output | |
| gdc.description.department | Konya Technical University | en_US |
| gdc.description.departmenttemp | [Ci̇Han] Mucahit, Department of Electrical and Electronic Engineering, Konya Technical University, Konya, Konya, Turkey; [Ceylan] Murat, Department of Electrical and Electronic Engineering, Konya Technical University, Konya, Konya, Turkey | en_US |
| gdc.description.endpage | 35 | en_US |
| gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q3 | |
| gdc.description.startpage | 20 | en_US |
| gdc.description.volume | 16308 LNCS | en_US |
| gdc.description.wosquality | N/A | |
| gdc.identifier.openalex | W4416259564 | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.4895952E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 2.7494755E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.scopuscites | 0 | |
| gdc.scopus.citedcount | 0 | |
| gdc.virtual.author | Ceylan, Murat | |
| relation.isAuthorOfPublication | 3ddb550c-8d12-4840-a8d4-172ab9dc9ced | |
| relation.isAuthorOfPublication.latestForDiscovery | 3ddb550c-8d12-4840-a8d4-172ab9dc9ced |
