Multi-View Thermal Breast Imaging for Malignancy Detection: Performance Benchmarking of CNN, Transformer, and Involution Architectures

dc.contributor.author Cihan, M.
dc.contributor.author Ceylan, M.
dc.date.accessioned 2025-12-24T21:39:57Z
dc.date.available 2025-12-24T21:39:57Z
dc.date.issued 2026
dc.description Niramai Health Analytix Pvt Ltd. en_US
dc.description.abstract Breast cancer screening demands accurate, non-invasive, low-cost tools. Infrared thermography is radiation-free and portable, but its utility hinges on robust computer-aided diagnosis (CAD). We benchmark three deep-learning families for static multi-view breast thermography—CNNs, Transformers, and an involution-based model (HarmonyNet-Lite). Experiments use the Breast Thermography dataset (119 patients; 476 manually segmented ROIs from anterior/oblique views). A compact pipeline performs ROI segmentation, RGB conversion, normalization, resizing, and moderate data augmentation; class imbalance is handled with minority oversampling and class-weighted loss. Evaluation follows patient-stratified five-fold cross-validation. HarmonyNet-Lite yields the best results: accuracy 87.47 ± 2.99%, recall 93.33 ± 2.13%, F1 68.43 ± 8.75%, and precision 54.23 ± 8.94%, indicating high sensitivity with an acceptable trade-off in precision for screening. Among CNNs, ResNet50 is strongest (85.59 ± 3.37%; F1 63.16 ± 3.87%), followed by InceptionV3 (83.38 ± 1.41%; F1 59.99 ± 6.72%), while DenseNet121 lags (79.25 ± 2.98%; F1 52.38 ± 5.62%). Transformer performance is mixed: ViT-Tiny is competitive (84.59 ± 4.23%; F1 59.46 ± 4.68%), whereas Swin-Tiny trails (81.30 ± 2.32%; F1 57.14 ± 4.44%) due to lower precision. Despite using only 0.14 M parameters, HarmonyNet-Lite outperforms heavier CNNs (ResNet50: 23.59 M; InceptionV3: 21.81 M) and lighter Transformers (ViT-Tiny: 2.84 M; Swin-Tiny: 11.78 M), demonstrating that content-adaptive, spatially aware involution operators efficiently capture fine thermal gradients. These findings position HarmonyNet-Lite as a strong, deployable CAD candidate. Future work will pursue multi-center validation, automated segmentation, multi-class labeling, hybrid involution–attention/multimodal models, and controlled GAN-based augmentation to mitigate data scarcity. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026. en_US
dc.identifier.doi 10.1007/978-3-032-10990-3_2
dc.identifier.isbn 9789819698936
dc.identifier.isbn 9789819698042
dc.identifier.isbn 9789819698110
dc.identifier.isbn 9789819698905
dc.identifier.isbn 9783032004949
dc.identifier.isbn 9789819512324
dc.identifier.isbn 9783032026019
dc.identifier.isbn 9783032008909
dc.identifier.isbn 9783031915802
dc.identifier.isbn 9789819698141
dc.identifier.issn 0302-9743
dc.identifier.scopus 2-s2.0-105022979434
dc.identifier.uri https://doi.org/10.1007/978-3-032-10990-3_2
dc.identifier.uri https://hdl.handle.net/123456789/12770
dc.language.iso en en_US
dc.publisher Springer Science and Business Media Deutschland GmbH en_US
dc.relation.ispartof Lecture Notes in Computer Science -- 4th International Conference on Artificial Intelligence over Infrared Images for Medical Applications, AIIIMA 2025 -- 2025-11-15 through 2025-11-15 -- Virtual, Online -- 343649 en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Breast Thermography en_US
dc.subject Deep Learning en_US
dc.subject Harmonynet-Lite en_US
dc.title Multi-View Thermal Breast Imaging for Malignancy Detection: Performance Benchmarking of CNN, Transformer, and Involution Architectures en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 57226111647
gdc.author.scopusid 56276648900
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Konya Technical University en_US
gdc.description.departmenttemp [Ci̇Han] Mucahit, Department of Electrical and Electronic Engineering, Konya Technical University, Konya, Konya, Turkey; [Ceylan] Murat, Department of Electrical and Electronic Engineering, Konya Technical University, Konya, Konya, Turkey en_US
gdc.description.endpage 35 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 20 en_US
gdc.description.volume 16308 LNCS en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W4416259564
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.7494755E-9
gdc.oaire.publicfunded false
gdc.opencitations.count 0
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Ceylan, Murat
relation.isAuthorOfPublication 3ddb550c-8d12-4840-a8d4-172ab9dc9ced
relation.isAuthorOfPublication.latestForDiscovery 3ddb550c-8d12-4840-a8d4-172ab9dc9ced

Files