Machine Learning Based Flow Simulator: Flow Around an Airfoil with Vortex Generators

dc.contributor.author Aksoy, Muharrem Hilmi
dc.contributor.author Ispir, Murat
dc.contributor.author Malazi, Mahdi Tabatabaei
dc.contributor.author Okbaz, Abdulkerim
dc.date.accessioned 2025-12-24T21:38:36Z
dc.date.available 2025-12-24T21:38:36Z
dc.date.issued 2026
dc.description.abstract Controlling the flow structure around an airfoil is crucial for increasing lift and reducing drag. Delaying flow separation improves aerodynamic performance, especially in aircraft and wind turbines. In recent years, artificial intelligence and machine learning methods have emerged as fast and cost-effective alternatives to traditional approaches in fluid mechanics. In this study, we aimed to control the flow around the NACA (National Advisory Committee for Aeronautics) 4412 airfoil using vortex generators (VGs) and to develop a machine-learning-based flow simulator that predicts velocity components based on angle of attack, VG yaw angle, and spatial coordinates. Experimental measurements were conducted in an open-surface, closed-loop water channel at a Reynolds number of Re = 1.0 x 104 using a two-dimensional Particle Image Velocimetry (PIV) system. A total of 60,500 data points were collected per velocity component from 20 experimental cases within the range of alpha = 0 degrees-20 degrees and beta = 15 degrees-30 degrees. A Multilayer Perceptron (MLP) model implemented using TensorFlow was trained to predict the ensemble-averaged (u) and (v) velocity components. We analyzed the effects of hidden layer neuron count and mini-batch size, achieving the highest accuracy with 41 neurons and a batch size of 4, yielding R2 values of 0.978 for (u) and 0.950 for (v). The error distributions were symmetric and closely approximated a Gaussian distribution. Experimental results showed that VGs delayed early-stage flow separation at low alpha but became less effective at higher alpha. The MLP model successfully reconstructed major flow features, providing a reliable data-driven alternative to CFD-based methods. Future work will extend the model to various airfoils, VG designs, Reynolds numbers, and unsteady flows using time-resolved PIV data. en_US
dc.description.sponsorship Faculty of Engineering and Natural Sciences of Konya Technical University en_US
dc.description.sponsorship he authors thank the Faculty of Engineering and Natural Sciences of Konya Technical University for providing the laboratory facilities en_US
dc.identifier.doi 10.1016/j.euromechflu.2025.204417
dc.identifier.issn 0997-7546
dc.identifier.issn 1873-7390
dc.identifier.scopus 2-s2.0-105023477855
dc.identifier.uri https://doi.org/10.1016/j.euromechflu.2025.204417
dc.identifier.uri https://hdl.handle.net/123456789/12742
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.ispartof European Journal of Mechanics B-Fluids en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Airfoil en_US
dc.subject Artificial Neural Networks en_US
dc.subject Flow Control en_US
dc.subject Machine Learning en_US
dc.subject Particle Image Velocimetry en_US
dc.subject Turbulent Flow en_US
dc.subject Vortex Generators en_US
dc.title Machine Learning Based Flow Simulator: Flow Around an Airfoil with Vortex Generators en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 55823803400
gdc.author.scopusid 58193831500
gdc.author.scopusid 56809362700
gdc.author.scopusid 55256278300
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Konya Technical University en_US
gdc.description.departmenttemp [Aksoy, Muharrem Hilmi; Ispir, Murat] Konya Tech Univ, Fac Engn & Nat Sci, Dept Mech Engn, TR-42020 Konya, Turkiye; [Malazi, Mahdi Tabatabaei] Istanbul Aydin Univ, Fac Engn, Dept Mech Engn, TR-34295 Istanbul, Turkiye; [Okbaz, Abdulkerim] Dogus Univ, Fac Engn, Dept Mech Engn, TR-34775 Istanbul, Turkiye en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 204417
gdc.description.volume 116 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W4416424917
gdc.identifier.wos WOS:001630832900001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.0862079E-10
gdc.oaire.publicfunded false
gdc.opencitations.count 0
gdc.plumx.mendeley 3
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author İspir, Murat
gdc.virtual.author Aksoy, Muharrem Hilmi
gdc.wos.citedcount 0
relation.isAuthorOfPublication f8622bac-1f25-4c77-900a-84273566a52a
relation.isAuthorOfPublication 71cdeba0-ed5a-451d-9e38-beec3675dda5
relation.isAuthorOfPublication.latestForDiscovery f8622bac-1f25-4c77-900a-84273566a52a

Files