Djaya: a Discrete Jaya Algorithm for Solving Traveling Salesman Problem

dc.contributor.author Gündüz, Mesut
dc.contributor.author Aslan, Murat
dc.date.accessioned 2021-12-13T10:29:46Z
dc.date.available 2021-12-13T10:29:46Z
dc.date.issued 2021
dc.description.abstract Jaya algorithm is a newly proposed stochastic population-based metaheuristic optimization algorithm to solve constrained and unconstrained continuous optimization problems. The main difference of this algorithm from the similar approaches, it uses best and worst solution in the population in order improve the intensification and diversification of the population, and this provides discovering potential solutions on the search space of the optimization problem. In this study, we propose discrete versions of the Jaya by using two major modifications in the algorithm. First is to generate initial solutions by using random permutations and nearest neighborhood approach to create population. Second is the update rule of the basic Jaya algorithm rearranged to solve discrete optimization problems. Due to characteristics of the discrete optimization problem, eight transformation operators are used for the discrete variants of the proposed algorithm. Based on these modifications, the discrete Jaya algorithm, called DJAYA, has been applied to solve fourteen different symmetric traveling salesman problem, which is one of the famous discrete problems in the discrete optimization. In order to improve the obtained best solution from DJAYA, 2-opt heuristic is also applied to the best solution of DJAYA. Once population size, search tendency and the other parameters of the proposed algorithm have been analyzed, it has been compared with the state-of-art algorithms and their variants, such as Simulated Annealing (SA), Tree-Seed Algorithm (TSA), State Transition Algorithm (STA) Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), Genetic Algorithm (GA) and Black Hole (BH). The experimental results and comparisons show that the proposed DJAYA is highly competitive and robust optimizer for the problem dealt with the study. (C) 2021 Elsevier B.V. All rights reserved. en_US
dc.identifier.doi 10.1016/j.asoc.2021.107275
dc.identifier.issn 1568-4946
dc.identifier.issn 1872-9681
dc.identifier.scopus 2-s2.0-85102431049
dc.identifier.uri https://doi.org/10.1016/j.asoc.2021.107275
dc.identifier.uri https://hdl.handle.net/20.500.13091/652
dc.language.iso en en_US
dc.publisher ELSEVIER en_US
dc.relation.ispartof APPLIED SOFT COMPUTING en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Discrete Optimization en_US
dc.subject Jaya en_US
dc.subject Transformation Operator en_US
dc.subject Traveling Salesman Problem en_US
dc.subject Particle Swarm Optimization en_US
dc.subject Ant Colony Optimization en_US
dc.subject Design Optimization en_US
dc.subject Search en_US
dc.subject Branch en_US
dc.subject Tsp en_US
dc.title Djaya: a Discrete Jaya Algorithm for Solving Traveling Salesman Problem en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 36168144300
gdc.author.scopusid 57196197224
gdc.bip.impulseclass C3
gdc.bip.influenceclass C4
gdc.bip.popularityclass C3
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 107275
gdc.description.volume 105 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W3134031301
gdc.identifier.wos WOS:000663087100009
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.downloads 0
gdc.oaire.impulse 53.0
gdc.oaire.influence 5.5079536E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Traveling salesman problem
gdc.oaire.keywords Discrete optimization
gdc.oaire.keywords JAYA
gdc.oaire.keywords Transformation operator
gdc.oaire.popularity 5.7486293E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.views 54
gdc.openalex.collaboration National
gdc.openalex.fwci 8.46621451
gdc.openalex.normalizedpercentile 0.98
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 55
gdc.plumx.crossrefcites 71
gdc.plumx.mendeley 61
gdc.plumx.scopuscites 79
gdc.scopus.citedcount 79
gdc.virtual.author Gündüz, Mesut
gdc.wos.citedcount 67
relation.isAuthorOfPublication 87ad5864-9916-41e0-ba4c-e024d7df88c5
relation.isAuthorOfPublication.latestForDiscovery 87ad5864-9916-41e0-ba4c-e024d7df88c5

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S1568494621001988-main.pdf
Size:
2.95 MB
Format:
Adobe Portable Document Format