Deep Learning Enhanced Energy Market Prediction: A Robust ARIMAX–LSTM Fusion for Crude Oil Pricing

dc.contributor.author Akusta, Ahmet
dc.contributor.author Yildirim, Hasan Hüseyin
dc.contributor.author Gün, Musa
dc.contributor.author Sakarya, Sakir
dc.date.accessioned 2025-09-10T16:52:11Z
dc.date.available 2025-09-10T16:52:11Z
dc.date.issued 2026
dc.description.abstract Crude oil is a highly strategic global resource, and price fluctuations significantly impact nearly all economic sectors. Therefore, accurate forecasting of its prices is essential for better financial stability and decision-making. This study aims to develop a robust model using monthly data from April 2004 to January 2024 to predict the price of crude oil. We propose a novel approach that blends ARIMAX and LSTM models using a weighted combination to leverage the strengths of econometric and machine learning methods. Unlike hybrid models, which are solely designed based on a decomposition-optimization structure, in our model, an explicit ensemble with weights via grid searching is used to enhance the model's flexibility and performance. As ARIMAX is more efficient in dealing with linear relationships and exogenous variables, LSTM performs much better and effectively captures nonlinear patterns and long-range dependence. Weight hyperparameter tuning and cross-validation help reduce the risk of overfitting or underfitting in the model. Our empirical results indicate that the LSTM model provides a powerful forecasting baseline. The weighted ensemble model offers a marginal improvement on the chronological test set, and the Diebold-Mariano test confirms this advantage is statistically significant. Cross-validation reveals the standalone LSTM to be highly robust, highlighting the importance of component model selection. This study contributes to a more sophisticated framework for risk assessment in energy policy by revealing the crucial trade-off between a model's period-specific accuracy and its general robustness. © 2025 Elsevier B.V., All rights reserved. en_US
dc.identifier.doi 10.1016/j.cam.2025.117006
dc.identifier.issn 0377-0427
dc.identifier.scopus 2-s2.0-105012354464
dc.identifier.uri https://doi.org/10.1016/j.cam.2025.117006
dc.language.iso en en_US
dc.publisher Elsevier B.V. en_US
dc.relation.ispartof Journal of Computational and Applied Mathematics en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject ARIMAX en_US
dc.subject Crude Oil Prices en_US
dc.subject Deep Learning en_US
dc.subject Energy Markets en_US
dc.subject Forecasting en_US
dc.subject LSTM en_US
dc.subject Robustness Testing en_US
dc.subject Artificial Intelligence en_US
dc.subject Costs en_US
dc.subject Crude Oil Price en_US
dc.subject Economic and Social Effects en_US
dc.subject Energy Policy en_US
dc.subject Learning Systems en_US
dc.subject ARIMAX en_US
dc.subject Cross Validation en_US
dc.subject Crude Oil Prices en_US
dc.subject Deep Learning en_US
dc.subject Energy Markets en_US
dc.subject Global Prices en_US
dc.subject Global Resources en_US
dc.subject LSTM en_US
dc.subject Market Prediction en_US
dc.subject Robustness Testing en_US
dc.subject Forecasting en_US
dc.title Deep Learning Enhanced Energy Market Prediction: A Robust ARIMAX–LSTM Fusion for Crude Oil Pricing en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Gun, Musa/0000-0002-5020-9342
gdc.author.scopusid 59550863200
gdc.author.scopusid 36951948200
gdc.author.scopusid 57213586680
gdc.author.scopusid 57209833614
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Konya Technical University en_US
gdc.description.departmenttemp [Akusta] Ahmet, Rectorate, Konya Technical University, Konya, Turkey; [Yildirim] Hasan Hüseyin, Burhaniye Faculty of Applied Sciences, Balikesir Üniversitesi, Balikesir, Turkey; [Gün] Musa, Faculty of Economics and Administrative Sciences, Recep Tayyip Erdogan University, Rize, Turkey; [Sakarya] Sakir, Bandirma Faculty of Economics and Administrative Sciences, Balikesir Üniversitesi, Balikesir, Turkey en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 117006
gdc.description.volume 474 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W4412955003
gdc.identifier.wos WOS:001546929700001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.0862079E-10
gdc.oaire.publicfunded false
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.33
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 11
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Akusta, Ahmet
gdc.wos.citedcount 0
relation.isAuthorOfPublication 0dae0322-7e0e-488f-8e26-c17e1dfe513e
relation.isAuthorOfPublication.latestForDiscovery 0dae0322-7e0e-488f-8e26-c17e1dfe513e

Files