Hierarchical Approaches To Solve Optimization Problems

Loading...
Thumbnail Image

Date

2022

Authors

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

Optimization is the operation of finding the most appropriate solution for a particular problem or set of problems. In the literature, there are many population-based optimization algorithms for solving optimization problems. Each of these algorithms has different characteristics. Although optimization algorithms give optimum results on some problems, they become insufficient to give optimum results as the problem gets harder and more complex. Many studies have been carried out to improve optimization algorithms to overcome these difficulties in recent years. In this study, six well-known population-based optimization algorithms (artificial algae algorithm - AAA, artificial bee colony algorithm - ABC, differential evolution algorithm - DE, genetic algorithm - GA, gravitational search algorithm - GSA, and particle swarm optimization - PSO) were used. Each of these algorithms has its own advantages and disadvantages. These population-based six algorithms were tested on CEC’17 test functions and their performances were examined and so the characteristics of the algorithms were determined. Based on these results, hierarchical approaches have been proposed in order to combine the advantages of algorithms and achieve better results. The hierarchical approach refers to the successful operation of algorithms. In this study, eight approaches were proposed, and performance evaluations of these structures were made on CEC’17 test functions. When the experimental results are examined, it is concluded that some hierarchical approaches can be applied, and some hierarchical approaches surpass the base states of the algorithms.

Description

Keywords

Population-based Algorithm, Optimization, CEC’17, Hierarchical Approaches, Yapay Zeka, Artificial Intelligence, Population-based Algorithm;Optimization;CEC’17;Hierarchical Approaches

Turkish CoHE Thesis Center URL

Fields of Science

0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology

Citation

WoS Q

N/A

Scopus Q

N/A
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Academic Platform journal of engineering and smart systems (Online)

Volume

10

Issue

3

Start Page

124

End Page

139
PlumX Metrics
Captures

Mendeley Readers : 1

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.0

Sustainable Development Goals

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

6

CLEAN WATER AND SANITATION
CLEAN WATER AND SANITATION Logo

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo

13

CLIMATE ACTION
CLIMATE ACTION Logo