A Novel Candidate Solution Generation Strategy for Fruit Fly Optimizer

dc.contributor.author İşcan, Hazım
dc.contributor.author Kıran, Mustafa Servet
dc.contributor.author Gündüz, Mesut
dc.date.accessioned 2021-12-13T10:29:53Z
dc.date.available 2021-12-13T10:29:53Z
dc.date.issued 2019
dc.description.abstract Fruit fly optimization algorithm (FOA) is one of the swarm intelligence algorithms proposed for solving continuous optimization problems. In the basic FOA, the best solution is always taken into consideration by the other artificial fruit flies when solving the problem. This behavior of FOA causes getting trap into local minima because the whole population become very similar to each other and the best solution in the population during the search. Moreover, the basic FOA searches the positive side of solution space of the optimization problem. In order to overcome these issues, this study presents two novel versions of FOA, pFOA_v1 and pFOA_v2 for short, that take into account not only the best solutions but also the worst solutions during the search. Therefore, the proposed approaches aim to improve the FOA's performance in solving continuous optimizations by removing these disadvantages. In order to investigate the performance of the novel proposed FOA versions, 21 well-known numeric benchmark functions are considered in the experiments. The obtained experimental results of pFOA versions have been compared with the basic FOA, SFOA which is an improved version of basic FOA, SPSO2011 which is one of the latest versions of particle swarm optimization, firefly algorithm called FA, tree seed algorithm TSA for short, cuckoo search algorithm briefly CS, and a new optimization algorithm JAYA. The experimental results and comparisons show that the proposed versions of FOA are better than the basic FOA and SFOA, and produce comparable and competitive results for the continuous optimization problems. en_US
dc.description.sponsorship Selcuk University/Konya Technical University Scientic Project Coordinatorship [18101009] en_US
dc.description.sponsorship This work was supported by the Selcuk University/Konya Technical University Scientic Project Coordinatorship under Grant 18101009. en_US
dc.identifier.doi 10.1109/ACCESS.2019.2940104
dc.identifier.issn 2169-3536
dc.identifier.scopus 2-s2.0-85077777322
dc.identifier.uri https://doi.org/10.1109/ACCESS.2019.2940104
dc.identifier.uri https://hdl.handle.net/20.500.13091/734
dc.language.iso en en_US
dc.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en_US
dc.relation.ispartof IEEE ACCESS en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Fruit Fly Algorithm en_US
dc.subject Best-Worst Strategy en_US
dc.subject Continuous Optimization en_US
dc.subject Numeric Benchmark Problem en_US
dc.subject Regression Neural-Network en_US
dc.subject Pid Controller en_US
dc.subject Algorithm en_US
dc.subject Model en_US
dc.subject Satisfaction en_US
dc.subject Perform en_US
dc.subject Colony en_US
dc.subject Foa en_US
dc.title A Novel Candidate Solution Generation Strategy for Fruit Fly Optimizer en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Kıran, Mustafa Servet/0000-0002-5896-7180
gdc.author.scopusid 35409399000
gdc.author.scopusid 54403096500
gdc.author.scopusid 36168144300
gdc.author.wosid Kiran, Mustafa Servet/AAF-9793-2019
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.endpage 130921 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 130903 en_US
gdc.description.volume 7 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W2972519870
gdc.identifier.wos WOS:000487544100019
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 7.0
gdc.oaire.influence 2.9461196E-9
gdc.oaire.isgreen false
gdc.oaire.keywords continuous optimization
gdc.oaire.keywords Electrical engineering. Electronics. Nuclear engineering
gdc.oaire.keywords Fruit fly algorithm
gdc.oaire.keywords best-worst strategy
gdc.oaire.keywords numeric benchmark problem
gdc.oaire.keywords TK1-9971
gdc.oaire.popularity 6.178841E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 1.07532422
gdc.openalex.normalizedpercentile 0.83
gdc.opencitations.count 9
gdc.plumx.crossrefcites 6
gdc.plumx.mendeley 11
gdc.plumx.scopuscites 10
gdc.scopus.citedcount 10
gdc.virtual.author Kıran, Mustafa Servet
gdc.virtual.author İşcan, Hazim
gdc.virtual.author Gündüz, Mesut
gdc.wos.citedcount 9
relation.isAuthorOfPublication 1b4c0009-61df-4135-a8d5-ed32324e2787
relation.isAuthorOfPublication 7e56b40a-ad39-4caf-b255-2bccb3c91a6e
relation.isAuthorOfPublication 87ad5864-9916-41e0-ba4c-e024d7df88c5
relation.isAuthorOfPublication.latestForDiscovery 1b4c0009-61df-4135-a8d5-ed32324e2787

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A_Novel_Candidate_Solution_Generation_Strategy_for_Fruit_Fly_Optimizer.pdf
Size:
10.21 MB
Format:
Adobe Portable Document Format