Teknik Bilimler Meslek Yüksekokulu Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.13091/1629
Browse
Browsing Teknik Bilimler Meslek Yüksekokulu Koleksiyonu by Publisher "Sage Publications Ltd"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation - WoS: 1Citation - Scopus: 1An Easy-To Self-Healing Smart Design for Increasing Impact Strength and Crashworthiness Resistance of Honeycomb Sandwich Structures(Sage Publications Ltd, 2022) Güçlü, Harun; Osmanoglu, Serhat; Hayırkuş, Aslıhan; Taş, Oğuzhan; Yazıcı, MuratIn this paper, the dynamic compression impact response of an aluminum honeycomb core filled with open-cell foams impregnated with self-healing liquid agents was investigated experimentally. Samples were subjected to a variety of impacts in order to determine healing time and self-healing performance. Three different sandwich specimens were developed to evaluate the effectiveness of self-healing. The sandwich specimens are designated as B (empty honeycomb core cells), S (only open-cell soft polyurethane foam-filled honeycomb core cells), and self-healing agent (SHA) (open-cell soft polyurethane foams impregnated with liquid self-healing agents). The test results were presented by considering the crashworthiness and healing efficiency criteria, and the impact characteristics of the samples were compared related to these criteria. After testing, the results demonstrated that the self-healing agent specimens had much fewer buckling deformation and displacement than their counterparts. Significant improvements were achieved in healing efficiencies and crashworthiness evaluation criteria. The peak load and the energy needed to attain peak load are considered healing efficiency criteria. Self-healing agent specimens reached 29.7% and 12.9% more peak loads, and in the energy absorbed up to peak loads 140% and 34.9% higher values than the B and S sandwiches. In the same samples, crushing strain features were acquired as 50% versus 66%, indicating less displacement in self-healing agent specimens than counterparts. The results indicated that an aluminum honeycomb sandwich structure that can heal itself after damage and recover impact characteristics remarkably could be produced practically.Article Citation - WoS: 8Citation - Scopus: 9An Experimental Performance Comparison of Newtonian and Non-Newtonian Fluids on a Centrifugal Blood Pump(Sage Publications Ltd, 2022) Önder, Ahmet; Yapıcı, Rafet; İncebay, ÖmerThe use of substitute fluid with similar rheological properties instead of blood is important due to ethical concerns and high blood volume consumption in pump performance test before clinical applications. The performance of a centrifugal blood pump with hydrodynamic journal bearing is experimentally tested using Newtonian 40% aqueous glycerin solution (GS) and non-Newtonian aqueous xanthan gum solution of 600 ppm (XGS) as working fluids. Experiments are performed at four different rotational speeds which are 2700, 3000, 3300, and 3600 rpm; experiments using GS reach between 8.5% and 37.2% higher head curve than experiments using the XGS for every rotational speed. It was observed that as the rotational speed and flow rate increase, the head curve difference between GS and XGS decreases. This result can be attributed to the friction reduction effect when using XGS in experiments at high rotation speed and high flow rate. Moreover, due to different fluid viscosities, differences in hydraulic efficiency were observed for both fluids. This study reveals that the use of Newtonian fluids as working fluids is not sufficient to determine the actual performance of a blood pump, and the performance effects of non-Newtonian fluids are remarkably important in pump performance optimizations.

