Bilgisayar ve Bilişim Fakültesi Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.13091/10834
Browse
Browsing Bilgisayar ve Bilişim Fakültesi Koleksiyonu by Publisher "HINDAWI LTD"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation - WoS: 18Citation - Scopus: 36Failure Prediction of Aircraft Equipment Using Machine Learning With a Hybrid Data Preparation Method(HINDAWI LTD, 2020) Çelikmıh, Kadir; İnan, Onur; Uğuz, HarunThere is a large amount of information and maintenance data in the aviation industry that could be used to obtain meaningful results in forecasting future actions. This study aims to introduce machine learning models based on feature selection and data elimination to predict failures of aircraft systems. Maintenance and failure data for aircraft equipment across a period of two years were collected, and nine input and one output variables were meticulously identified. A hybrid data preparation model is proposed to improve the success of failure count prediction in two stages. In the first stage, ReliefF, a feature selection method for attribute evaluation, is used to find the most effective and ineffective parameters. In the second stage, aK-means algorithm is modified to eliminate noisy or inconsistent data. Performance of the hybrid data preparation model on the maintenance dataset of the equipment is evaluated by Multilayer Perceptron (MLP) as Artificial Neural network (ANN), Support Vector Regression (SVR), and Linear Regression (LR) as machine learning algorithms. Moreover, performance criteria such as the Correlation Coefficient (CC), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) are used to evaluate the models. The results indicate that the hybrid data preparation model is successful in predicting the failure count of the equipment.Article Citation - WoS: 25Citation - Scopus: 36Through-Wall Radar Classification of Human Posture Using Convolutional Neural Networks(HINDAWI LTD, 2019) Kılıç, Alper; Babaoğlu, İsmail; Babalık, Ahmet; Arslan, AhmetThrough-wall detection and classification are highly desirable for surveillance, security, and military applications in areas that cannot be sensed using conventional measures. In the domain of these applications, a key challenge is an ability not only to sense the presence of individuals behind the wall but also to classify their actions and postures. Researchers have applied ultrawideband (UWB) radars to penetrate wall materials and make intelligent decisions about the contents of rooms and buildings. As a form of UWB radar, stepped frequency continuous wave (SFCW) radars have been preferred due to their advantages. On the other hand, the success of classification with deep learning methods in different problems is remarkable. Since the radar signals contain valuable information about the objects behind the wall, the use of deep learning techniques for classification purposes will give a different direction to the research. This paper focuses on the classification of the human posture behind the wall using through-wall radar signals and a convolutional neural network (CNN). The SFCW radar is used to collect radar signals reflected from the human target behind the wall. These signals are employed to classify the presence of the human and the human posture whether he/she is standing or sitting by using CNN. The proposed approach achieves remarkable and successful results without the need for detailed preprocessing operations and long-term data used in the traditional approaches.

