Bilgisayar ve Bilişim Fakültesi Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.13091/10834
Browse
Browsing Bilgisayar ve Bilişim Fakültesi Koleksiyonu by Publisher "Elsevier B.V."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation - WoS: 29Citation - Scopus: 54Alexnet Architecture Variations With Transfer Learning for Classification of Wound Images(Elsevier B.V., 2023) Eldem, H.; Ülker, E.; Işıklı, O.Y.In medical world, wound care and follow-up is one of the issues that are gaining importance to work on day by day. Accurate and early recognition of wounds can reduce treatment costs. In the field of computer vision, deep learning architectures have received great attention recently. The achievements of existing pre-trained architectures for describing (classifying) data belonging to many image sets in the real world are primarily addressed. However, to increase the success of these architectures in a certain area, some improvements and enhancements can be made on the architecture. In this paper, the classification of pressure and diabetic wound images was performed with high accuracy. The six different new AlexNet architecture variations (3Conv_Softmax, 3Conv_SVM, 4Conv_Softmax, 4Conv_SVM, 6Conv_Softmax, 6Conv_SVM) were created with a different number of implementations of Convolution, Pooling, and Rectified Linear Activation (ReLU) layers. Classification performances of the proposed models are investigated by using Softmax classifier and SVM classifier separately. A new original Wound Image Database are created for performance measures. According to the experimental results obtained for the Database, the model with 6 Convolution layers (6Conv_SVM) was the most successful method among the proposed methods with 98.85% accuracy, 98.86% sensitivity, and 99.42% specificity. The 6Conv_SVM model was also tested on diabetic and pressure wound images in the public medetec dataset, and 95.33% accuracy, 95.33% sensitivity, and 97.66% specificity values were obtained. The proposed method provides high performance compared to the pre-trained AlexNet architecture and other state-of-the-art models in the literature. The results showed that the proposed 6Conv_SVM architecture can be used by the relevant departments in the medical world with good performance in medical tasks such as examining and classifying wound images and following up the wound process. © 2023 Karabuk UniversityArticle Citation - WoS: 10Citation - Scopus: 13Discrete Artificial Algae Algorithm for Solving Job-Shop Scheduling Problems(Elsevier B.V., 2022) Şahman, Mehmet Akif; Korkmaz, SedatThe Job-Shop Scheduling Problem (JSSP) is an NP-hard problem and can be solved with both exact methods and heuristic algorithms. When the dimensionality is increased, exact methods cannot produce proper solutions, but heuristic algorithms can produce optimal or near-optimal results for high-dimensional JSSPs in a reasonable time. In this work, novel versions of the Artificial Algae Algorithm (AAA) have been proposed to solve discrete optimization problems. Three encoding schemes (Random-Key (RK), Smallest Position Value (SPV), and Ranked-Over Value (ROV) Encoding Schemes) were integrated with AAA to solve JSSPs. In addition, the comparison of these three encoding schemes was carried out for the first time in this study. In the experiments, 48 JSSP problems that have 36 to 300 dimensions were solved with 24 different approaches obtained by integrating 3 different coding schemes into 8 state-of-the-art algorithms. As a result of the comparative and detailed analysis, the best results in terms of makespan value were obtained by integrating the SPV coding scheme into the AAA method. © 2022 Elsevier B.V.

