Browsing by Author "Zeybek, Ozer"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article Citation - WoS: 1Citation - Scopus: 1Bending Performance of Reinforced Concrete Beams With Partial Waste Glass Aggregate Replacement Assessed by Experimental, Theoretical and Digital Image Correlation Analyses(Nature Portfolio, 2025) Ozkilic, Yasin Onuralp; Basaran, Bogachan; Aksoylu, Ceyhun; Karalar, Memduh; Zeybek, Ozer; Althaqafi, Essam; Umiye, Osman AhmedThis study examines the usage of waste glass aggregate (WGA) for the consumption of sustainable reinforced concrete regarding the replacement of fine aggregate (FA) and coarse aggregate (CA). For this purpose, a series of tests consisting of a total of 12 beams were carried out to explore the bending performance. The quantity of the longitudinal reinforcement section area and WGA percentage were selected as the prime variables. For this purpose, the aggregate was swapped with WGA with weight percentages of 10% and 20% for the FA and 10% and 20% for coarse aggregate. The test outcomes revealed that the crack and bending properties of the reinforced concrete beams (RCBs) were greatly affected by the section area of tension reinforcement and the percentage of the WGA. The WGA percentage might be effectively used as 20% of the partial replacement of FA. With the addition of FA to the mixture, the load-bearing capacity of RCB increases. The increase in the WGA percentage by more than 10% might cause a considerable reduction in the capacity of the RCBs, especially when the longitudinal reinforcement ratio is high. Furthermore, the digital image correlation method was used to show the cracks/micro-cracks and to define displacement in RCBs.Article Citation - WoS: 6Citation - Scopus: 6Experimental, Theoretical and Digital Image Correlation Methods to Assess Bending Performance of RC Beams With Recycled Glass Powder Replacing Cement(Nature Portfolio, 2025) Aksoylu, Ceyhun; Basaran, Bogachan; Karalar, Memduh; Zeybek, Ozer; Althaqafi, Essam; Beskopylny, Alexey N.; Ozkilic, Yasin OnuralpThis study investigates the use of Waste Glass Powder (WGP) as a proportional replacement for cement in sustainable concrete production. In addition, changes in the bending capacity of the Reinforced Concrete (RC) Beams were examined by adding WGP at different rates (0%, 10%, 20%, 30%) to RC Beams with different steel reinforcement ratios (rho s = 0.0077 i.e. Phi 8, rho s = 0.0121 i.e. Phi 10, rho s = 0.0174 i.e. Phi 12). To pursue this goal, 12 test specimens were evaluated and then confirmed to explore the bending productivity. The amount of longitudinal bar section area and WGP proportion were chosen as the key parameters. For this aim, experimental and analytical investigations were carried out by replacing cement with WGP in weight ratios of 10%, 20%, and 30% and considering three different longitudinal reinforcements (rho s = 0.0077 i.e. Phi 8, Phi 10, Phi 12). The test results showed that tension reinforcement section area and WGP proportion dimensions had dissimilar rupture and flexure effects on RC Beams. Furthermore, investigational tests are confirmed with the help of the Digital Imagining Method, and the image processing method was used to identify the cracks/microcracks in RC Beams. Consequently, it is observed that each WGP ratio in the concrete combination has dissimilar bending and rupture properties on the RC Beams for experimental tests-10% of partial replacement of cement. It was found that a WGP ratio of more than 10% can significantly reduce the bending capacity of RC Beams. When the experimental test beams were compared with the analytical results, it was observed that the experimental results and analytical calculations are in agreement.Article Citation - WoS: 14Citation - Scopus: 17Utilizing Recycled Glass Powder in Reinforced Concrete Beams: Comparison of Shear Performance(Nature Portfolio, 2025) Karalar, Memduh; Basaran, Bogachan; Aksoylu, Ceyhun; Zeybek, Ozer; Althaqafi, Essam; Beskopylny, Alexey N.; Ozkilic, Yasin OnuralpIn this research, the effect of using waste glass powder (WGP) as a partial replacement for cement on the flexural behavior of reinforced-concrete-beams (R-C-Bs) was investigated. For this aim, a total of 9 specimens were produced, and investigational experimentations were conducted to evaluate the flexural performances of R-C-Bs. Subsequently, the cement was partially replaced with WGP with weight percentages of 0%, 10%, 20% and 30%. Furthermore, the influence of stirrup spacing (SS) in the longitudinal reinforcement on productivity was also examined. The results presented indicate that the efficient WGP percentage might be considered as 10% of the partial replacement of cement. Increasing the WGP percentage within the cement by more than 10% may considerably reduce the ability of the R-C-Bs, noticeably when the lengthwise reinforcement proportion is high. Additionally, the experimental shear strengths of R-C-Bs attained from the flexural tests were compared with the shear capacities estimated using Eurocode 2 and ACI 318 - 19 regulations. It was concluded that the shear capacities calculated with ACI318-19 are much lower than the values calculated with EC2. Furthermore, it may be observed that ACI318-19 calculates the shear capacities of R-C-Bs to be 15-51% higher than those of the experimental results. Furthermore, the Digital Image Correlation (DIC) was used to study the flexural cracks/micro-cracks in R-C-Bs. Comparisons indicate that DIC has similar deformations and fracture properties for the R-C-Bs as the experimental tests. Finally, it was considered that the optimum consumption quantities determined by the results of the present research would be a guide for future investigation.

