Browsing by Author "Turkben, Ayse Bilge"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Article Eco-Friendly Green Synthesis of Co3O4-NiO Nano Catalysts From Papaver Somniferum Biomass for Efficient NaBH4 Hydrolysis: Advancing Circular Bioeconomy and Clean Hydrogen Energy Conversion(Pergamon-Elsevier Science Ltd, 2025) Lakhali, Houssem; Bastas, Seher; Turkben, Ayse Bilge; Ceyhan, Ayhan AbdullahHydrogen generation via renewable and sustainable pathways is critical for clean energy transition and decarbonization efforts. In this study, we report the first-time development of a high-performance Co-Ni nanocatalyst synthesized through a green approach utilizing Papaver somniferum extract for efficient hydrogen generation via NaBH4 hydrolysis. The catalyst was comprehensively characterized using FTIR, XRD, FE-SEM/EDX, BET, TEM, and XPS, revealing its well-defined -morphological, structural, and compositional properties. The hydrogen generation rate (HGR) was optimized by systematically varying the catalyst loading, NaOH and NaBH4 concentrations, and reaction temperature. Under optimal conditions, the catalyst achieved a remarkable HGR of 2286.85 ml g(cat)(-1) min(-1) at 30 degrees C demonstrating superior catalytic efficiency compared to conventional Co-Ni catalysts. Kinetic analysis using the Langmuir-Hinshelwood model revealed an activation energy of 47.26 kJ mol(-1), a reaction rate order of 0.1 and an enthalpy change (Delta H) of -31.21 kJ mol(-1), highlighting the favorable thermodynamics of the reaction. FE-SEM analysis revealed a relatively uniform particle distribution, with an average size of similar to 200 nm and minimal agglomeration. The catalyst reusability studies demonstrated sustained activity over five consecutive cycles, confirming its long-term stability and practical viability for renewable hydrogen generation. These findings highlight the potential of green-synthesized nanocatalysts for sustainable hydrogen energy applications, particularly in fuel-cell technologies and hybrid renewable energy systems.

