Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Browse GCRIS
Entities
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Shilov, Alexandr A."

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 47
    Citation - Scopus: 49
    Composition Component Influence on Concrete Properties With the Additive of Rubber Tree Seed Shells
    (MDPI, 2022) Beskopylny, Alexey N.; Shcherban, Evgenii M.; Stel'makh, Sergey A.; Meskhi, Besarion; Shilov, Alexandr A.; Varavka, Valery; Evtushenko, Alexandr
    The growth in the volume of modern construction and the manufacture of reinforced concrete structures (RCSs) presents the goal of reducing the cost of building materials without compromising structures and opens questions about the use of environmentally friendly natural raw materials as a local or full replacement of traditional mineral components. This can also solve the actual problem of disposal of unclaimed agricultural waste, the features of which may be of interest to the construction industry. This research aimed to analyze the influence of preparation factors on concrete features with partial substitution of coarse aggregate (CA) with rubber tree (RT) seed shells and to determine the optimal composition that can make it possible to attain concrete with improved strength features. CA was replaced by volume with RT seed shells in an amount from 2% to 16% in 2% increments. Scanning electronic microscopy was employed to investigate the structure of the obtained concrete examples. The maximum increase in strength features was observed when replacing coarse filler with 4% RT seed shell by volume and amounted to, for compressive and axial compressive strength (CS) and tensile and axial tensile strength (TS) in twisting, 6% and 8%, respectively. The decrease in strain features under axial compression and under axial tension was 6% and 5%, respectively. The modulus of elasticity increased to 7%. The microstructure of hardened concrete samples with partial replacement of CA with RT seed shells in the amount of 2%, 4% and 6% was the densest with the least amount of pores and microcracks in comparison with the structure of the sample of the control composition, as well as samples with the replacement of CA with RT seed shells in an amount of more than 6%. The expedient effective replacement of CA with RT shells led to a reduction in battered stone of up to 8%.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 50
    Citation - Scopus: 55
    Normal-Weight Concrete With Improved Stress-Strain Characteristics Reinforced With Dispersed Coconut Fibers
    (MDPI, 2022) Shcherban, Evgenii M.; Stel'makh, Sergey A.; Beskopylny, Alexey N.; Mailyan, Levon R.; Meskhi, Besarion; Shilov, Alexandr A.; Chernil'nik, Andrei; Aksoylu, Ceyhun
    According to the sustainable development concept, it is necessary to solve the issue of replacing fiber from synthetic materials with natural, environmentally friendly, and cheap-to-manufacture renewable resources and agricultural waste. Concrete is the primary material for which fibers are intended. Therefore, the use of vegetable waste in concrete is an essential and urgent task. Coconut fiber has attracted attention in this matter, which is a by-product of the processing of coconuts and makes it relevant. This work aims to investigate the experimental base for the strength properties of dispersed fiber-reinforced concrete with coconut fibers, as well as the influence of the fiber percentage on the mechanical, physical, and deformation characteristics. The samples were made of concrete with a compressive strength at 28 days from 40 to 50 MPa. The main mechanical characteristics such as strength in compression (cubic and prismatic) and tension (axial and bending), as well as the material's compressive and tensile strains, were investigated. The percentage of reinforcement with coconut fibers was taken in the range of 0% to 2.5% with an increment of 0.25 wt.%. Tests were carried out 28 days after the manufacture. The microstructure of the resulting compositions was investigating using the electron microscopy method. The most rational percentage of coconut fibers was obtained at 1.75%. The increase in mechanical indicators was 24% and 26% for compression and axial compression, respectively, and 42% and 43% for tensile bending and axial tension, respectively. The ultimate strains in compression were raised by 46% and in tension by 51%. The elastic modulus was increased by 16%.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 14
    Citation - Scopus: 18
    Physical, Mechanical and Structural Characteristics of Sulfur Concrete With Bitumen Modified Sulfur and Fly Ash
    (MDPI, 2023) Stel'makh, Sergey A.; Shcherban', Evgenii M.; Beskopylny, Alexey N.; Mailyan, Levon R.; Meskhi, Besarion; Shilov, Alexandr A.; Evtushenko, Alexandr; Aksoylu, Ceyhun
    Industrial waste usage in the technology of construction materials is currently in a relevant and promising direction. Materials made of industrial waste have a lower cost and are highly environmentally friendly. The objective of this study is to develop effective compositions of sulfur concrete based on the maximum possible number of various wastes of the local industry for this and to investigate the characteristics of this composite. Test samples of sulfur concrete were made from sulfur, fly ash, mineral aggregates and bitumen additive. The dosages of fly ash, sand and bitumen varied, while the content of sulfur and crushed stone remained constant. The following main characteristics of sulfur concrete were determined: density; compressive strength; and water absorption. Tests of sulfur concrete were carried out after 1 day and 28 days of hardening. The best values of compressive strength (24.8 MPa) and water absorption (0.9%) were recorded for the composition of sulfur concrete at the age of 28 days with the following content of components: sulfur-25%, modified with 4% bitumen of its mass; fly ash-10%; crushed stone-40%; and sand-25%. The optimal composition of modified sulfur concrete showed compressive strength up to 78% more and water absorption up to 53% less than the control composition. The characteristics of the sulfur concrete samples after 28 days of hardening differ slightly from the values after 1 day of hardening (up to 1.8%). An analysis of the structure confirmed the effectiveness of the developed composition of sulfur concrete in comparison with the control.
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH

Log in to GCRIS Dashboard

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback