Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Browse GCRIS
Entities
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Ozmen, Ramazan"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 3
    Citation - Scopus: 2
    Experimentally Validated Numerical Investigation on the Behavior of Composite Shear Walls Subjected To Cyclic Loading
    (Elsevier - Division Reed Elsevier India Pvt Ltd, 2024) Kisa, M. Hasim; Yuksel, S. Bahadir; Ozmen, Ramazan
    Due to design considerations, reinforced concrete (RC) shear walls, with narrow cross-sections containing excessive steel reinforcing bars, are commonly used in tall buildings for seismic resistance to produce functional floor plans. However, as is particularly evident in the end region components of the RC shear walls, bulky reinforcement can lead to difficulties in concrete pouring and cause concrete segregation. Accordingly, this study concentrates on the numerical investigation of composite shear wall behavior created using cold-formed steel sheet (CFSS) elements under cyclic loading. Three composite shear wall test specimens, having L-shaped CFSSs utilized in the shear wall end regions, were modeled on a 1/3 scale with ABAQUS finite element analysis software. The specimens' crack propagation behavior was investigated at each loading stage in the numerical analyses and validated with experiments. Furthermore, the lateral force-top displacement relationship was used to assess the wall's behaviors. According to the results, the modeling approach accurately simulates the composite shear wall's behavior. Finally, a parametric analysis was performed with the verified numerical simulations to examine the effect of the CFSS elements' material properties on the composite shear walls. The parametric studies revealed that the steel sheets' yield strength and position from the neutral axis affected the shear walls' lateral load-bearing capacity.
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH

Log in to GCRIS Dashboard

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback