Browsing by Author "Nusrat, Fatema"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Master Thesis Arıma ve Derin Öğrenme Modelleri Kullanılarak Türkiye'deki Covıd-19 Vaka ve Vefat Sayılarının Tahmini(Konya Teknik Üniversitesi, 2022) Nusrat, Fatema; Baykan, Ömer KaanKoronavirüs (Covid-19), 2019 yılında ortaya çıkan, hızlı bir şekilde yayılan, insan sağlığına etki eden dünya çapında büyük bir tehdittir. Çin'in Wuhan şehrindeki deniz ürünleri ve hayvan pazarlarından kaynaklandığı düşünülmektedir. Covid-19, bulaşıcı bir hastalıktır ve insandan insana bulaşmaktadır. 11 Mart 2020'de Dünya Sağlık Örgütü (World Health Organization- WHO), Covid-19 salgınını küresel bir salgın olarak ilan etmiştir. Ülkelerin salgın kaynaklı vaka ve vefat sayılarını tahmin edebilmesi geleceğe yönelik planlama yapabilmeleri için büyük önem taşımaktadır. Bu tez çalışmasının amacı, geçmiş verilere dayanarak Türkiye'nin gelecekteki toplam Covid-19 vaka ve vefat sayılarını tahmin etmektir. Veri seti, Türkiye Cumhuriyeti Sağlık Bakanlığı'nın internet sitesindeki veriler kullanılarak oluşturulmuştur. Tahmin modelleri olarak, Uzun Kısa Süreli Bellek (Long Short Term Memory -LSTM), Çift Yönlü LSTM (Bidirectional LSTM- BiLSTM), Geçitli Tekrarlayan Birim (Gated Recurrent Unit - GRU) olmak üzere üç farklı derin öğrenme modeli ve Otoregresif Entegre Hareketli Ortalama (Autoregressive Integrated Moving Average- ARIMA) istatistiksel modeli kullanılmıştır. 11 Mart 2020 ile 31 Mayıs 2021 tarihleri arasındaki veriler modellerin eğitilmesi, test edilmesi için kullanılmış olup, 1 Haziran - 30 Haziran 2021 tarihleri arasındaki vaka ve vefat sayıları tahmin edilmiştir. Modellerin performansını değerlendirmek için Kök Ortalama Kare Hatası (Root Mean Square Error- RMSE) ve Ortalama Mutlak Yüzde Hatası (Mean Absolute Percentage Error- MAPE) kullanılmıştır. ARIMA modeli RMSE, MAPE ve tahmin değerleri açısından derin öğrenme tekniklerinden daha iyi performans göstermiştir. ARIMA modelinin ürettiği tahmin değerlerinin, Türkiye'nin gerçek vaka ve vefat sayıları ile daha uyumlu olduğu gözlenmiştir.Article Prediction of Diabetes Mellitus by Using Gradient Boosting Classification(2020) Nusrat, Fatema; Uzbaş, Betül; Baykan, Ömer KaanDiabetes has become a pervasive and endemic health problem worldwide. It is a chronic disease and also life-threatening. It can cause health problems in many organs such as the heart, kidneys, eyes, nerves, and blood vessels. To reduce the fatality rate from diabetes, early prevention techniques are needed. Nowadays, machine learning techniques are used to predict or detect different life-threatening diseases like cancer, diabetes, heart diseases, thyroid, etc. In this study, a prediction model of diabetes mellitus was presented using the Pima Indian dataset. Three different machine learning techniques that Decision Tree (DT), Random Forest (RF) and, Gradient Boosting (GB) algorithm were used to predict diabetes mellitus and the performance analysis was performed. Confusion matrix, accuracy, F1 score, precision, recall, Cohen’s kappa were evaluated and also a ROC curve was plotted. Out of the three techniques, the best results have been achieved with GB.

