Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Browse GCRIS
Entities
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Ngong, Ivoline C."

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 2
    Citation - Scopus: 2
    Different Deep Learning Based Classification Models for Covid-19 Ct-Scans and Lesion Segmentation Through the Cgan-Unet Hybrid Method
    (Int Information & Engineering Technology Assoc, 2023) Ngong, Ivoline C.; Baykan, Nurdan Akhan
    The new coronavirus, which emerged in early 2020, caused a major global health crisis in 7 continents. An essential step towards fighting this virus is computed tomography (CT) scans. CT scans are an effective radiological method to detecting the diagnosis in early stage, but have greatly increased the workload of radiologists. For this reason, there are systems needed that will reduce the duration of CT examinations and assist radiologists. In this study, a two-stage system has been proposed for COVID-19 detection. First, a hybrid method is proposed that can segment the infected region from CT images. The reason for this is that there is not always a reference image in the datasets used in the classification. For this purpose; UNet, UNet++, SegNet and PsPNet were used both separately and as hybrids with GAN, to automatically segment infected areas from chest CT slices. According to the segmentation results, cGAN-UNet hybrid system was selected as the most successful method. Experimental results show that the proposed method achieves a segmentation success with a dice score of 92.32% and IoU score of 86.41%. In the second stage, three classifiers which include a Convolutional Neural Network (CNN), a PatchCNN and a Capsule Neural Network (CapsNet) were used to classify the generated masks as either COVID-19 or not, using the segmented images obtained from cGAN-UNet. Success of these classifiers was 99.20%, 92.55% and 73.84%, respectively. According to these results, the highest success was achieved in the system where cGAN-Unet and CNN are used together.
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH

Log in to GCRIS Dashboard

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback