Browsing by Author "Karalar, M."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article Citation - WoS: 13Citation - Scopus: 17Influence of Ceramic Waste Powder on Shear Performance of Environmentally Friendly Reinforced Concrete Beams(Nature Research, 2024) Özkılıç, Y.O.; Althaqafi, E.; Bahrami, A.; Aksoylu, C.; Karalar, M.; Özdöner, N.; Shcherban, E.M.This investigation considered the usability of ceramic waste powder (CWP) in altered quantities in reinforced concrete beams (RCBs). In this way, it was aimed to reduce the environmental impacts of concrete by using CWP as a raw material in RCBs. 12 small-scale shear RCBs with the dimensions of 100 × 150 × 1000 mm were tested in this study. The variations of stirrups spacing and CWP ratio were examined in these specimens. The percentages of CWP by weight utilized in RCBs were 10%, 20%, and 30%, and stirrups spacings were adopted as 270 mm, 200 mm, and 160 mm. At the end of the study, it was determined that more than 10% CWP additive negatively affected the RCBs' compressive strength. The load-carrying capacity reduced between 30.3% and 59.4% when CWP increased from 0% to 30% as compared to RCB with stirrups spacing of 270 mm without CWP. However, compared to RCB with stirrups spacings of 200 mm and 160 mm without CWP, there were decreases in the load-carrying capacity as 21.4%–54.3% and 18.6%–54.6%, respectively. While the CWP ratio increased, the specimens with 160 mm, 200 mm, and 270 mm stirrups spacings obtained a lower maximum load value. However, with the increase of the CWP ratio in the specimens with 160 mm stirrups spacing, RCBs reached the maximum load-carrying capacity at an earlier displacement value. When stirrups spacing was selected as 270 mm, it was observed that the maximum load-carrying capacity of RCBs reached at a similar displacement value as the CWP ratio increased. Besides, it was resulted that the bending stiffness of RCBs reduced as the quantity of CWP enhanced. The bending stiffness decreased by 29.1% to 66.4% in the specimens with 270 mm stirrups spacing, 36.3% to 20.2% with 200 mm stirrups spacing, and 10.3% to 36.9% with 160 mm stirrups spacing. As an implication of the experiments, the use of CWP up to 10% in RCBs was realized as an economical and environmental approach and is suggested. There is some evidence to report that making use of CWP may be considered to be ecologically benign. This is due to the fact that reusing CWP may significantly reduce CO2 emissions, save energy, and reduce total power consumption. Furthermore, the experimental results were compared to the analytical calculations. © The Author(s) 2024.Article Citation - WoS: 20Citation - Scopus: 36Mechanical Behavior in Terms of Shear and Bending Performance of Reinforced Concrete Beam Using Waste Fire Clay as Replacement of Aggregate(Elsevier Ltd, 2023) Özkılıç, Y.O.; Başaran, B.; Aksoylu, C.; Karalar, M.; Martins, C.H.In this experimental and analytical study, waste fire clay (WFC) was consumed by the use of replacing fine aggregate (FA) in confident amounts. It is targeted to remove the current sustainable complications by confirming the consumption of WFC in reinforced concrete beams (RCBs) as raw materials. For this purpose, FAs were partially replaced with WFC in proportions of 0 %, 10 %, 20 %, and 30 %. Based on this motivation, a series of experimental studies were performed on 12 + 12 small-scale bending and shear RCBs of 100×150×1000mm, considering altered WFC and stirrup spacing. While the percentage of WFC in the RCBs was selected as 0 %, 10 %, 20 %, and 30 % by weight, correspondingly, the longitudinal reinforcement was taken into account as ?12, ?10, ?8. Besides, while the longitudinal tension and compression reinforcements of constant 2?12 and 2?6, the stirrup spacing was chosen as 160 mm, 200 mm, and 270 mm. As a result of the study, increasing the tensile reinforcement ratio has made the WFC less effective. Similarly, as stirrup spacing decreases, stirrup dominates the behavior, and as stirrup spacing increases, WFC determines the behavior. Finally, while the WFC content for bending RCBs increases the ability at the maximum level for the range of 20 %-30 %, it can be said that the optimum WFC content for shear RCBs is 20 %. The experimental results were obtained with the prediction of ACI-318 and the reason for the difference between the expected and actual values can be explained in detail. © 2023Article Citation - WoS: 60Citation - Scopus: 70Shear Performance of Reinforced Expansive Concrete Beams Utilizing Aluminium Waste(Elsevier Editora Ltda, 2023) Özkılıç, Y.O.; Karalar, M.; Aksoylu, C.; Beskopylny, A.N.; Stel'makh, S.A.; Shcherban, E.M.; Qaidi, S.Shear damage is a catastrophic failure in the design of reinforced concrete structural elements. To prevent it, the effect of aluminum wastes on reinforced concrete shear beams was investigated in this study. There is a gap in the scientific field on the expanding concrete with aluminium waste, and no research has been done on the utilizing of aluminum waste to produce expandable concrete. Moreover, there is a gap in expandable concrete usage with aluminum waste reinforcing, which is crucial for engineering applications especially beams, slabs and columns. For this purpose, experimental investigations were performed on a total of 12 Reinforced Concrete Beams (RCB) with different aluminum waste ratio (0, 1, 2 and 3 vol.%) and different shear reinforcement spacing (270, 200 and 160 mm). The depth span ratio was chosen as 1.6, 2.0 and 2.7. RCB was simply supported on the loading frame and subjected to four-points bending. As a result of experimental tests for each sample, the maximum load, stiffness, ductility and energy dissipation capacity were calculated. It was observed that the load capacity of the Al refuse combined RCBs raises as the vacancy of the stirrup reinforcement reductions compared with reference RCBs. Furthermore, it was found that the load capacity of the RCBs reduced as the Al refuse quantity in the concrete mixture was increased from 0% to 3%. However, it was found that the decrease in load capacity for 1 vol.% aluminum waste could be tolerated. For this reason, it can be stated that aluminum waste (AW) in reinforced concrete shear beams will contribute to the beam up to 1%. © 2023 The Authors

