Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Browse GCRIS
Entities
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Ibrahim, Mohammed"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Conference Object
    Chest X-Ray Image Denoising Based on Convolutional Denoising Autoencoder
    (2019) Ibrahim, Mohammed; Uymaz, Sait Ali
    Nowadays, medical imaging plays important role in medical settings to obtain high resolution images for the human body. The medical imaging techniques usually suffer from many types of noises such as gaussian, salt and pepper and speckle noises. So, getting a high-resolution body image is so difficult. The accurate medical images is necessary for diagnosis of many diseases. In this paper, medical imaging denoising technique based on convolutional denoising autoencoder is proposed. The NIH chest X-Ray dataset has been used for the training and testing of the proposed model. The model consists of 10 layers to learn the representation of the noise in the image and then reconstruct a new image without the noise. The model performance evaluated by using mean squared error and peak signal to noise ratio. For the training purpose we added gaussian noise to the dataset. The total number of images used is 25,000 splitted into training set 22,500 images and testing set 2500 images. The model achieved excellent results on the testing set with 0.01 mean squared error.
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH

Log in to GCRIS Dashboard

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback