Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Browse GCRIS
Entities
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Hakeem, Ibrahim Y."

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Erratum
    Retraction: Application of Waste Ceramic Powder as a Cement Replacement in Reinforced Concrete Beams Toward Sustainable Usage in Construction
    (Elsevier, 2024) Aksoylu, Ceyhun; Ozkilic, Yasin Onuralp; Bahrami, Alireza; Yildizel, Sadik Alper; Hakeem, Ibrahim Y.; Ozdoner, Nebi; Karalar, Memduh
    [No Abstract Available]
  • Loading...
    Thumbnail Image
    Erratum
    Retraction: Crashworthiness Performance of Filament Wound Gfrp Composite Pipes Depending on Winding Angle and Number of Layers
    (Elsevier, 2024) Hakeem, Ibrahim Y.; Ozkilic, Yasin Onuralp; Bahrami, Alireza; Aksoylu, Ceyhun; Madenci, Emrah; Asyraf, Muhammad Rizal Muhammad; Fayed, Sabry
    [No Abstract Available]
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 4
    Citation - Scopus: 4
    Use of Waste Steel Fibers From Cnc Scraps in Shear-Deficient Reinforced Concrete Beams
    (Techno-Press, 2023) Kalkan, İlker; Özkılıç Yasin Onuralp; Aksoylu, Ceyhun; Mydin, Md Azree Othuman; Martins, Carlos Humberto; Hakeem, Ibrahim Y.; Işık, Ercan
    The present paper summarizes the results of an experimental program on the influence of using waste lathe scraps in the concrete mixture on the shear behavior of RC beams with different amounts of shear reinforcement. Three different volumetric ratios (1, 2 and %3) for the scraps and three different stirrup spacings (160, 200 and 270 mm) were adopted in the tests. The shear span-to-depth ratios of the beams were 2.67 and the stirrup spacing exceeded the maximum spacing limit in the building codes to unfold the contribution of lathe scraps to the shear resistances of shear-deficient beams, subject to shear-dominated failure (shear-tension). The experiments depicted that the lathe scraps have a pronounced contribution to the shear strength and load-deflection behavior of RC beams with widely-spaced stirrups. Namely, with the addition of 1%, 2% and 3% waste lathe scraps, the load-bearing capacity escalated by 9.1%, 21.8% and 32.8%, respectively, compared to the reference beam. On the other hand, the contribution of the lathe scraps to the load capacity decreases with decreasing stirrup spacing, since the closely-spaced stirrups bear the shear stresses and render the contribution of the scraps to shear resistance insignificant. The load capacity, deformation ductility index (DDI) and modulus of toughness (MOT) values of the beams were shown to increase with the volumetric fraction of scraps if the stirrups are spaced at about two times the beam depth. For the specimens with a stirrup spacing of about the beam depth, the scraps were found to have no considerable contribution to the load capacity and the deformation capacity beyond the ultimate load. In other words, for lathe scrap contents of 1-3%, the DDI values increased by 5-23% and the MOT values by 63.5-165% with respect to the reference beam with a stirrup spacing of 270 mm. The influence of the lathe scraps to the DDI and MOT values were rather limited and even sometimes negative for the stirrup spacing values of 160 and 200 mm.
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH

Log in to GCRIS Dashboard

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback