Browsing by Author "Gridach, Mourad"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article Citation - WoS: 1Citation - Scopus: 1Empirical Evaluation of Leveraging Named Entities for Arabic Sentiment Analysis(ZARKA PRIVATE UNIV, 2020) Mulki, Hala; Haddad, Hatem; Gridach, Mourad; Babaoglu, İsmailSocial media reflects the attitudes of the public towards specific events. Events are often related to persons, locations or organizations, the so-called Named Entities (NEs). This can define NEs as sentiment-bearing components. In this paper, we dive beyond NEs recognition to the exploitation of sentiment-annotated NEs in Arabic sentiment analysis. Therefore, we develop an algorithm to detect the sentiment of NEs based on the majority of attitudes towards them. This enabled tagging NEs with proper tags and, thus, including them in a sentiment analysis framework of two models: supervised and lexicon-based. Both models were applied on datasets of multi-dialectal content. The results revealed that NEs have no considerable impact on the supervised model, while employing NEs in the lexicon-based model improved the classification performance and outperformed most of the baseline systems.Article Citation - WoS: 2Citation - Scopus: 4Syntax-Ignorant N-Gram Embeddings for Dialectal Arabic Sentiment Analysis(CAMBRIDGE UNIV PRESS, 2021) Mulki, Hala; Haddad, Hatem; Gridach, Mourad; Babaoglu, İsmailArabic sentiment analysis models have recently employed compositional paragraph or sentence embedding features to represent the informal Arabic dialectal content. These embeddings are mostly composed via ordered, syntax-aware composition functions and learned within deep neural network architectures. With the differences in the syntactic structure and words' order among the Arabic dialects, a sentiment analysis system developed for one dialect might not be efficient for the others. Here we present syntax-ignorant, sentiment-specific n-gram embeddings for sentiment analysis of several Arabic dialects. The novelty of the proposed model is illustrated through its features and architecture. In the proposed model, the sentiment is expressed by embeddings, composed via the unordered additive composition function and learned within a shallow neural architecture. To evaluate the generated embeddings, they were compared with the state-of-the art word/paragraph embeddings. This involved investigating their efficiency, as expressive sentiment features, based on the visualisation maps constructed for our n-gram embeddings and word2vec/doc2vec. In addition, using several Eastern/Western Arabic datasets of single-dialect and multi-dialectal contents, the ability of our embeddings to recognise the sentiment was investigated against word/paragraph embeddings-based models. This comparison was performed within both shallow and deep neural network architectures and with two unordered composition functions employed. The results revealed that the introduced syntax-ignorant embeddings could represent single and combinations of different dialects efficiently, as our shallow sentiment analysis model, trained with the proposed n-gram embeddings, could outperform the word2vec/doc2vec models and rival deep neural architectures consuming, remarkably, less training time.Conference Object Citation - WoS: 7Citation - Scopus: 10Syntax-Ignorant N-Gram Embeddings for Sentiment Analysis of Arabic Dialects(ASSOC COMPUTATIONAL LINGUISTICS-ACL, 2019) Mulki, Hala; Haddad, Hatem; Gridach, Mourad; Babaoglu, İsmailArabic sentiment analysis models have employed compositional embedding features to represent the Arabic dialectal content. These embeddings are usually composed via ordered, syntax-aware composition functions and learned within deep neural frameworks. With the free word order and the varying syntax nature across the different Arabic dialects, a sentiment analysis system developed for one dialect might not be efficient for the others. Here we present syntax-ignorant n-gram embeddings to be used in sentiment analysis of several Arabic dialects. The proposed embeddings were composed and learned using an unordered composition function and a shallow neural model. Five datasets of different dialects were used to evaluate the produced embeddings in the sentiment analysis task. The obtained results revealed that, our syntax-ignorant embeddings could outperform word2vec model and doc2vec both variant models in addition to hand-crafted system baselines, while a competent performance was noticed towards baseline systems that adopted more complicated neural architectures.

