Browsing by Author "Eskizeybek, V."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation - WoS: 3Citation - Scopus: 3Adsorption-Assisted Photocatalytic Degradation of Anionic Direct Yellow-50 and Cationic Methylene Blue Dyes by Chemically Synthesized Poly(1,5-Diaminoanthraquinone(Springer, 2025) Akıllı, A.; Özler, A.; Taymaz, B.H.; Hancı, A.; Eskizeybek, V.; Kamış, H.Conducting polymers renowned for their exceptional photocatalytic activity, conductivity, and visible-light absorption capabilities present a compelling alternative for advanced photocatalytic applications. In this regard, the creation of conductive polymers of the next generation has enormous promise for improving energy efficiency as well as solving environmental issues. In this study, the conductive polymer poly(1,5-diaminoanthraquinone) (PDAAQ) with a band gap of 1.28 eV and an electrical conductivity of 1.23 S/cm was successfully synthesized via chemical oxidative polymerization using ammonium peroxydisulfate as an oxidant and perchloric acid as an initiator in an acetonitrile polymerization medium. The adsorption-assisted photocatalytic performance of PDAAQ has been investigated in cationic methylene blue (MB) and an anionic direct yellow (DY) dye under visible irradiation. The effect of polymerization medium, oxidant type, polymerization time, and monomer oxidant ratio on adsorption-assisted photocatalytic degradation of MB was investigated. The synthesized PDAAQ polymer demonstrates exceptional photocatalytic performance, completely degrading MB and DYE dyes under visible light illumination in 6 and 8 min through an adsorption-assisted photocatalysis mechanism. Besides, the photocatalytic dye degradation performance of PDAAQ was investigated for the degradation of synthetic wastewater (SWW) under visible light. The PDAAQ polymer proves to be an effective photocatalyst for photocatalytic applications, showcasing exceptional potential in degrading model dyes and treating synthetic wastewater. © The Author(s) 2025.Article Citation - WoS: 3Citation - Scopus: 3Enhancing Structural Health Monitoring of Fiber-Reinforced Polymer Composites Using Piezoresistive Ti3c2tx Mxene Fibers(Nature Research, 2025) Taymaz, B.H.; Kamış, H.; Dziendzikowski, M.; Kowalczyk, K.; Dragan, K.; Eskizeybek, V.The anisotropic behavior of fiber-reinforced polymer composites, coupled with their susceptibility to various failure modes, poses challenges for their structural health monitoring (SHM) during service life. To address this, non-destructive testing techniques have been employed, but they often suffer from drawbacks such as high costs and suboptimal resolutions. Moreover, routine inspections fail to disclose incidents or failures occurring between successive assessments. As a result, there is a growing emphasis on SHM methods that enable continuous monitoring without grounding the aircraft. Our research focuses on advancing aerospace SHM through the utilization of piezoresistive MXene fibers. MXene, characterized by its 2D nanofiber architecture and exceptional properties, offers unique advantages for strain sensing applications. We successfully fabricate piezoresistive MXene fibers using wet spinning and integrate them into carbon fiber-reinforced epoxy laminates for in-situ strain sensing. Unlike previous studies focused on high strain levels, we adjust the strain levels to be comparable to those encountered in practical aerospace applications. Our results demonstrate remarkable sensitivity of MXene fibers within low strain ranges, with a maximum sensitivity of 0.9 at 0.13% strain. Additionally, MXene fibers exhibited high reliability for repetitive tensile deformations and low-velocity impact loading scenarios. This research contributes to the development of self-sensing composites, offering enhanced capabilities for early detection of damage and defects in aerospace structures, thereby improving safety and reducing maintenance expenses. © The Author(s) 2025.

