Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Browse GCRIS
Entities
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Ekmekci, Ahmet Hakan"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    3b T1 Ağırlıklı Mr Görüntülerinde Atlas Tabanlı Hacim Ölçüm Yöntemini Kullanarak Alzheimer Hastalığının Teşhisi
    (Gazi Univ, 2022) Öziç, Muhammet Üsame; Ekmekci, Ahmet Hakan; Özşen, Seral; Barstuğan, Mücahid; Yıldoğan, Aydın Talip
    Alzheimer Hastalığı yaşlılık ile beraber başlayan bir beyin hastalığıdır. Hastalığın teşhisi, takibi ve ilgili beyin bölgelerinin ölçümleri yüksek çözünürlüklü üç boyutlu yapısal manyetik rezonans görüntüleri ile yapılabilmektedir. Bu çalışmada, OASIS veri tabanından alınan 70 Alzheimer 70 Normal 3B T1 ağırlıklı MR görüntüleri üzerinde 116 subkortikal bölgenin hacimsel ölçümünü yapabilecek atlas tabanlı bir hacim ölçüm ve sınıflandırma modeli tasarlanmıştır. Ölçülen değerler her bir denekte gri madde, parankim, total beyin hacmi ile bölünerek normalizasyon işlemi yapılmıştır. Böylece ham ölçülen değerler dahil olmak üzere 140x116 matris boyutlu 4 farklı veri kümesi elde edilmiştir. Veri kümeleri entropi, t-test, roc, Bhattacharyya, Wilcoxon özellik derecelendirme yöntemleri ile en anlamlı özellikten en anlamsız özelliğe doğru derecelendirilmiştir. Derecelendirilen veriler her döngüde sırasıyla birleştirilmiş, lineer ve rbf kernel kullanan destek vektör makinelerine 10-kat çapraz geçerleme ile verilerek sınıflandırma işlemi yapılmıştır. Tüm senaryolar analiz edilerek, en az özellikle en iyi sonucu veren küme, özellik derecelendirme ve sınıflandırma metodu ortaya konulmuştur. Normalizasyon ve özellik derecelendirme yöntemlerinin sınıflandırma sonucuna etkisi incelenmiştir. Deneysel işlemler sonucunda roc özellik derecelendirme tabanlı lineer destek vektör makinesi, total beyin hacmi normalizasyonlu 107 özellik kullanarak %95.71 hassasiyet, %94.29 özgüllük, %95.00 doğruluk, 0.95 eğri altında kalan alan değerleri ile en yüksek oranları vermektedir.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 2
    Atlas-Based Segmentation Pipelines on 3d Brain Mr Images: a Preliminary Study
    (EDUSOFT PUBLISHING, 2018) Öziç, Muhammet Üsame; Ekmekci, Ahmet Hakan; Özşen, Seral
    Three dimensional structural MR imaging is a high-resolution imaging technique used in the detection and follow up of neurological disorders. Rigid changes in the brain are usually interpreted and reported manually by radiologists using MR images. The results of manual interpretation may vary with respect to the experts. At the same time, measurement and segmentation of the brain regions and the manual evaluation of the volume changes are a difficult process. With the increase of numerical methods, automated and semi-automated package programs have been developed for the analysis of brain measurements. These programs use electronic brain atlases or tissue probability maps. However, since the package programs have a lot of analysis time and give only certain outputs, they may be disadvantaged in the use of segmentation and measurement of brain regions. Hence, special pipelines are needed especially to obtain valuable features for artificial intelligence and classification studies. In this study, we propose pipelines to segment 3D certain brain regions, which will help to find the basic features such as volume changes, intensity variations, symmetry deteriorations, and tissue changes. With these pipelines, 3D segmentation of the brain regions defined in the atlas can be performed and normalized. It is aimed to use these studies as a preliminary study in order to quantitatively determine the basic changes in the brain by performing the volume of interest methods and to formulate a decision support system.
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH

Log in to GCRIS Dashboard

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback