Browsing by Author "Efe, Enes"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Article Citation - WoS: 1Citation - Scopus: 1Comparison of Time-Frequency Analyzes for a Sleep Staging Application With Cnn(Trans Tech Publications Ltd, 2022) Efe, Enes; Özşen, SeralSleep staging is the process of acquiring biological signals during sleep and marking them according to the stages of sleep. The procedure is performed by an experienced physician and takes more time. When this process is automated, the processing load will be reduced and the time required to identify disease will also be reduced. In this paper, 8 different transform methods for automatic sleep-staging based on convolutional neural networks (CNNs) were compared to classify sleep stages using single-channel electroencephalogram (EEG) signals. Five different labels were used to stage the sleep. These are Wake (W), NonREM-1 (N1), NonREM-2 (N2), NonREM-3 (N3), and REM (R). The classifications were done end-to-end without any hand-crafted features, ie without requiring any feature engineering. Time-Frequency components obtained by Short Time Fourier Transform, Discrete Wavelet Transform, Discrete Cosine Transform, Hilbert-Huang Transform, Discrete Gabor Transform, Fast Walsh-Hadamard Transform, Choi-Williams Distribution, and Wigner-Willie Distribution were classified with a supervised deep convolutional neural network to perform sleep staging. The discrete Cosine Transform-CNN method (DCT-CNN) showed the highest performance among the methods suggested in this paper with an F1 score of 89% and a value of 0.86 kappa. The findings of this study revealed that the transformation techniques utilized for the most accurate representation of input data are far superior to traditional approaches based on manual feature extraction, which acquires time, frequency, or nonlinear characteristics. The results of this article are expected to be useful to researchers in the development of low-cost, and easily portable devices.Article Citation - WoS: 40Citation - Scopus: 52Cosleepnet: Automated Sleep Staging Using a Hybrid Cnn-Lstm Network on Imbalanced Eeg-Eog Datasets(Elsevier Sci Ltd, 2023) Efe, Enes; Özşen, SeralSleep relaxes and rests the body by slowing down the metabolism, making us physically stronger and fitter when we wake up. However, in a sleep disorder that may occur in humans, this process is reversed and various dis-orders occur in the body. Therefore, determining sleep stages is vital for diagnosing and treating such sleep disorders. However, manual scoring of sleep stages is tedious, time-consuming and requires considerable expertise. It also suffers from inter-observer variability. Deep learning techniques can automate this process, overcome these problems and produce more consistent results. This study proposes a new hybrid neural network architecture using focal loss and discrete cosine transform methods to solve the training data imbalance problem. The model was trained on four different databases using k-fold validation strategies (subject-wise), and the highest score was 87.11% accuracy, 81.81% Kappa score, and 79.83% MF1 when using two channels (EEG-EOG). The results of our approach are promising when compared to existing methods.Doctoral Thesis Derin Öğrenme Ağ Yapılarının Uyku Evreleme Problemlerineuygulanması(Konya Teknik Üniversitesi, 2022) Efe, Enes; Özşen, SeralUyku, metabolizmayı yavaşlatarak vücudu rahatlatır ve dinlendirir, uyandığımızda fiziksel olarak daha güçlü ve zinde olmamızı sağlar. Ancak insanlarda meydana gelebilecek bir uyku bozukluğunda bu süreç tersine döner ve vücutta çeşitli rahatsızlıklar meydana gelir. Uyku evrelerinin belirlenmesi, bu tür uyku bozukluklarının teşhis ve tedavisi için hayati önem taşımaktadır. Bununla birlikte, uyku aşamalarının manuel olarak puanlanması yorucu, zaman alıcıdır ve önemli ölçüde uzmanlık gerektirir. Aynı zamanda uzmanlar arasındaki deneyim ve yorumlama farklılıkları da manuel uyku evrelemeyi bir derecede nesnellikten uzaklaştırmaktadır. Derin öğrenme teknikleri bu süreci otomatikleştirebilir, bu sorunların üstesinden gelebilir ve daha tutarlı sonuçlar üretebilir. Bu amaçla üç farklı çalışma yapılmıştır. Bunlardan ilki giriş verilerinin en doğru temsilini bulabilmek adına Kısa Zamanlı Fourier Dönüşümü (KZFD), Ayrık Dalgacık Dönüşümü (ADD), Ayrık Kosinüs Dönüşümü (AKD), Hilbert-Huang Dönüşümü (HHD), Ayrık Gabor Dönüşümü (AGD), Hızlı Walsh-Hadamard Dönüşümü (HWHD), Choi-Williams Dağılımı (CWD) ve Wigner-Willie Dağılımı (WWD) ile elde edilen Zaman-Frekans bileşenlerinin tek kanallı elektroensefalogram (EEG) tabanlı gözetimli derin bir Evrişimsel Sinir Ağına (ESA) verilmesi ve otomatik uyku evreleme işleminin gerçekleştirilmesidir. Yapılan bu çalışmada elde edilen sonuçlar, giriş verilerinin en doğru temsili için kullanılan dönüşüm yöntemlerinin, zaman, frekans veya non-linear özelliklerin elde edildiği manuel yani el-yapımı özellik çıkarımına dayalı geleneksel yöntemlerden çok daha iyi olduğunu göstermiştir. İkinci yapılan çalışma temel olarak dengesiz verisetlerinde sınıflandırma problemini Siyam Sinir Ağları'nın yardımıyla çözmeyi amaçlamaktadır. Ağ tasarımı sırasında, benzerlik skorunu hesaplayabilmek için Öklid, Manhattan, Jaccard, Kosinüs, Canberra, Bray-Curtis ve Kullback-Leibler Diverjans olmak üzere yedi farklı mesafe ölçüm yöntemi seçilmiştir. Bu sayede, derin öğrenme ve SSA'lara dayalı otomatik uyku evrelemesi için yeni bir rekabetçi yöntem türetilmiştir. Son olarak eğitim veri dengesizliği problemini çözmek için Odak Kaybı (OK) ve AKD yöntemlerini kullanan yeni bir hibrit sinir ağı mimarisi önerilmiştir. Model, k-kat çapraz doğrulama (KÇD) (kişi bazlı) kullanılarak dört farklı veritabanında eğitilmiş ve en yüksek puan iki kanal (EEG-Elektrookülogram (EOG)) kullanıldığında %87,11 doğruluk, %81,81 Kappa puanı ve %79,83 MF1 olarak elde edilmiştir. Yaklaşımımızın sonuçları, mevcut yöntemlerle karşılaştırıldığında umut vericidir.Article Citation - WoS: 4Citation - Scopus: 4A New Approach for Automatic Sleep Staging: Siamese Neural Networks(Int Information & Engineering Technology Assoc, 2021) Efe, Enes; Özsen, SeralSleep staging aims to gather biological signals during sleep, and categorize them by sleep stages: waking (W), non-REM-1 (N1), non-REM-2 (N2), non-REM-3 (N3), and REM (R). These stages are distributed irregularly, and their number varies with sleep quality. These features adversely affect the performance of automatic sleep staging systems. This paper adopts Siamese neural networks (SNNs) to solve the problem. During the network design, seven distance measurement methods, namely, Euclidean, Manhattan, Jaccard, Cosine, Canberra, Bray-Curtis, and Kullback Leibler divergence (KLD), were compared, revealing that Bray-Curtis (83.52%) and Cosine (84.94%) methods boast the best classification performance. The results of our approach are promising compared to traditional methods.

