Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Browse GCRIS
Entities
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Boyrazli, Mustafa"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Artificial Neural Network Analysis of Titanium Dissolution Kinetics in a Sustainable DL-Malic Acid and Sodium Fluoride System: a Fundamental Study Using the Rotating Disc Method
    (Taylor & Francis Ltd, 2025) Motasim, Mahmoud; Abbaker, Ahmed; Agacayak, Tevfik; Aydogan, Salih; Boyrazli, Mustafa; Abbas, Mohaid; Seifelnassr, Ahmed A. S.
    This investigation presents a comprehensive kinetic analysis of titanium dissolution utilising DL-malic acid (a 50/50 mix of D- and L- isomer off malic acid) in conjunction with sodium fluoride solution, offering an innovative alternative to conventional chloride and sulphate methodologies. The experimental protocol employed a rotating disc apparatus to elucidate dissolution kinetics under systematically varied parameters, including angular velocity (rad/min), disc surface area (cm(2)), temperature (degrees C), and molar concentrations of DL-malic acid and sodium fluoride. A sophisticated Artificial Neural Network (ANN) architecture, implementing back-propagation methodology through the Levenberg-Marquardt algorithm with a multilayer {6-10-1} configuration, was developed to predict titanium dissolution behavior. Experimental findings demonstrated that sodium fluoride concentration predominantly influenced dissolution kinetics, manifesting a chemical reaction order of 0.674. The investigation substantiated the theoretical framework of the Levich equation within the rotating disc paradigm. The ANN model demonstrated exceptional predictive capability, achieving correlation coefficients (R-2) of 0.995, 0.994, 0.996, and 0.995 for training, validation, testing, and aggregate datasets. The experimentally determined activation energy of 23 kJ/mol conclusively indicated a diffusion-controlled reaction mechanism, providing fundamental insights into the mass transfer phenomena governing the dissolution process. Cette & eacute;tude pr & eacute;sente une analyse cin & eacute;tique compl & egrave;te de la dissolution du titane utilisant l'acide malique-DL (un m & eacute;lange 50/50 d'isom & egrave;res D et L de l'acide malique) en conjonction avec une solution de fluorure de sodium, offrant un choix innovateur par rapport aux m & eacute;thodologies conventionnelles au chlorure et au sulfate. Le protocole exp & eacute;rimental a utilis & eacute; un appareil & agrave; disque rotatif pour & eacute;lucider la cin & eacute;tique de dissolution, avec des param & egrave;tres vari & eacute;s syst & eacute;matiquement, notamment la vitesse angulaire (rad/min), la superficie du disque (cm2), la temp & eacute;rature (degrees C) et les concentrations molaires de l'acide malique-DL et de fluorure de sodium. On a d & eacute;velopp & eacute; une architecture sophistiqu & eacute;e de r & eacute;seau neuronal artificiel (RNA), mettant en oe uvre une m & eacute;thodologie de r & eacute;tropropagation au moyen de l'algorithme de Levenberg-Marquardt avec une configuration multicouche {6-10-1}, afin de pr & eacute;dire le comportement de dissolution du titane. Les r & eacute;sultats exp & eacute;rimentaux ont d & eacute;montr & eacute; que la concentration en fluorure de sodium influen & ccedil;ait principalement la cin & eacute;tique de dissolution, produisant un ordre de r & eacute;action chimique de 0.674. L'& eacute;tude a corrobor & eacute; le cadre th & eacute;orique de l'& eacute;quation de Levich dans le paradigme du disque rotatif. Le mod & egrave;le de RNA a d & eacute;montr & eacute; une capacit & eacute; exceptionnelle de pr & eacute;diction, atteignant des coefficients de corr & eacute;lation (R2) de 0.995, 0.994, 0.996 et 0.995 pour l'apprentissage, la validation, les essais et les ensembles de donn & eacute;es agr & eacute;g & eacute;es. L'& eacute;nergie d'activation de 23 kJ/mol d & eacute;termin & eacute;e exp & eacute;rimentalement a indiqu & eacute; de mani & egrave;re concluante un m & eacute;canisme de r & eacute;action contr & ocirc;l & eacute; par diffusion, fournissant des informations fondamentales sur les ph & eacute;nom & egrave;nes de transfert de masse gouvernant le proc & eacute;d & eacute; de dissolution.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 1
    Citation - Scopus: 1
    The Investigation of Metallic Silver Dissolution Kinetics Using DL-Malic Acid With Hydrogen Peroxide Solution as an Eco-Friendly Leaching System: The Rotating Disc Method
    (Springer, 2025) Motasim, Mahmoud; Boyrazli, Mustafa; Aydogan, Salih; Agacayak, Tevfik; Ali, Babiker
    Although cyanidation remains widely employed for silver recovery due to its cost-effectiveness, it presents serious environmental and health hazards. In this study, the dissolution kinetics of silver were investigated in an environmentally benign leaching system composed of DL-malic acid and hydrogen peroxide, employing the rotating disc method. High-purity silver discs (99.99 pct) were used to examine the effects of rotation speed, disc surface area, temperature, and the concentrations of DL-malic acid and hydrogen peroxide on the leaching rate. X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) were conducted to characterize the silver surface before and after leaching. Additionally, contact angle measurements were performed to evaluate the interfacial interaction between the leaching solution and the silver surface. The results demonstrated that the dissolution rate increased with temperature, rotation speed, hydrogen peroxide concentration, and surface area. However, elevated concentrations of DL-malic acid resulted in the formation of a passivating layer on the silver surface, likely due to chelation effects, which significantly impeded the access of protons (H+) to the silver surface, thereby reducing the dissolution rate. Contact angle analysis further indicated reduced wettability at higher DL-malic acid concentrations, with values reaching up to 87.80 deg. XRD analysis confirmed the partial oxidation of the silver surface, forming Ag2O. The reaction was determined to be chemically controlled, with an activation energy of 44.14 kJ/mol.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 2
    Citation - Scopus: 2
    Kinetics Study on the Leaching of Metallic Silver With Ammonium Carbonate as an Eco-Friendly Alternative for Cyanide
    (Springer, 2025) Aydogan, Salih; Abdelraheem, Mohamed Taha Osman; Ali, Babiker; Boyrazli, Mustafa
    This article describes the dissolution kinetics of metallic silver (Ag) in ammonium carbonate and hydrogen peroxide (H2O2) solution. The influences of temperature, rotation speed, H2O2 concentration, and ammonium carbonate concentration were investigated. The results indicate that ammonium carbonate concentrations between 0.025 and 0.1 M have a significant impact on the dissolution rate. The dissolution rate is positively impacted by H2O2 concentrations between 0.025 M and 0.10 M. Furthermore, there is a positive relationship between the dissolution rate of Ag and the rotation speed. Silver dissolves more readily at temperatures between 20 degrees C and 55 degrees C. However, a temperature > 40 degrees C led to the formation of a silver carbonate layer on the disc when using high concentrations of hydrogen peroxide and ammonium carbonate. The activation energy of 11.10 kJ/mol was calculated, supporting the validity of the Levich equation, which is predicated on the suggestion that mass transfer control describes the extraction rate.
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH

Log in to GCRIS Dashboard

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback