Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Browse GCRIS
Entities
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Benbakreti, S."

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 4
    Citation - Scopus: 5
    The Classification of Eye Diseases From Fundus Images Based on Cnn and Pretrained Models
    (Czech Technical University in Prague, 2024) Benbakreti, S.; Benbakreti, S.; Ozkaya, U.
    Visual impairment affects more than a billion people worldwide due to insufficient care or inadequate vision screening. Computer-aided diagnosis using deep neural networks is a promising approach, it can analyse and process retinal fundus images, providing valuable reference data for doctors in clinical diagnosis or screening. This study aims to achieve an accurate classification of fundus images, including images of healthy patients as well as those with diabetic retinopathy, cataracts, and glaucoma, using a convolutional neural network (CNN) architecture and several pretrained models (AlexNet, GoogleNet, ResNet18, ResNet50, YOLOv3, and VGG 19). To enhance the training process, a mirror effect technique was applied to augment the volume of data. The experimental study resulted in very satisfactory outcomes, with the GoogleNet model paired with the SGDM optimiser achieving the highest accuracy (92.7 %). © 2024 The Author(s).
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH

Log in to GCRIS Dashboard

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback