Browsing by Author "Bahrami, A."
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Erratum Corrigendum To “Experimental Investigation and Analytical Verification of Buckling of Functionally Graded Carbon Nanotube-Reinforced Sandwich Beams” [Heliyon Volume 10, Issue 8, April 2024, Article E28388](s2405844024044190)(10.1016/J.heliyon.2024.e28388)(Elsevier Ltd, 2025) Madenci, E.; Özkılıç, Y.O.; Bahrami, A.; Aksoylu, C.; Asyraf, M.R.M.; Hakeem, I.Y.; Fayed, S.In this article, reference [52] was included in error: [52] E. Payton, J. Khubchandani, A. Thompson, J.H. Price, Parents’ expectations of high schools in firearm violence prevention, J. Community Health 42 (2017) 1118–1126. The correct version of the reference is as below: [52] Senjanović, I., Vladimir, N., Hadžić, N., & Tomić, M. (2016). New first order shear deformation beam theory with in-plane shear influence. Engineering Structures, 110, 169-183. https://doi.org/10.1016/j.engstruct.2015.11.032 The authors apologize for the error. © 2025Article Citation - WoS: 9Citation - Scopus: 9Crashworthiness Performance of Filament Wound Gfrp Composite Pipes Depending on Winding Angle and Number of Layers(Elsevier Ltd, 2024) Hakeem, I.Y.; Özkiliç, Y.O.; Bahrami, A.; Aksoylu, C.; Madenci, E.; Asyraf, M.R.M.; Beskopylny, A.N.The main goal of this study is to enhance the crashworthiness performance of tubular composites to absorb more energy by optimizing the winding angle of their fibers. The crashworthiness performance of glass fiber-reinforced polymer composite pipes manufactured using the filament winding is investigated in detail. The effects of the winding angle of the fibers and thickness of the tube wall on the energy absorption were examined through quasi-static compression tests. The composite pipes were produced with 1200 tex E-glass fibers and Epikote 828 resin as the matrix material. The winding angles of ± 30°, ± 45°, ± 55°, ± 75°, and ± 90° were evaluated, and the number of the winding layers, ranged from 1 to 3, was also assessed. Quasi-static axial compressive loading was applied to 15 specimens using a hydraulic actuator. The results revealed that the one-layer specimens experienced buckling damage at low load levels, while an increase in the number of the layers led to higher load-carrying capacity and different types of damages. Furthermore, as the number of the layers increased, the load-carrying capacity and energy absorption of the specimens significantly improved. Progressive failure was observed in the specimens [± 90] for all the layers' configurations, with the specimen [± 90]3, having three layers, exhibiting the highest performance in terms of the load-carrying capacity and energy absorption. The failure modes indicated a combination of the fibers' separation, buckling, diagonal shear failure, and crushing in the upper and lower heads. © 2023 The AuthorsArticle Citation - WoS: 33Citation - Scopus: 41Experimental Investigation and Analytical Prediction of Flexural Behaviour of Reinforced Concrete Beams With Steel Fibres Extracted From Waste Tyres(Elsevier Ltd, 2023) Yıldızel, S.A.; Özkılıç, Y.O.; Bahrami, A.; Aksoylu, C.; Başaran, B.; Hakamy, A.; Arslan, M.H.In recent years, studies on the use of car tyre wastes in concrete have gained momentum. Especially, the effect of recycled waste steel wires (RWSWs) from tyres to be mixed into concrete for using in newly designed reinforced concrete buildings on the performance of construction elements is a fairly new research area. In this study, the bending behaviour of 12 reinforced concrete beams was investigated having 1/3 geometric scale, 100 × 150 × 1000 mm in size, and produced with RWSWs additive in different volumetric ratios (1%, 2%, and 3%) under vertical loads. Another main parameter selected in the study was the amount of varying tension reinforcements (2ϕ12, 2ϕ10, and 2ϕ8). The load-carrying, stiffness, ductility, and energy dissipation capacities of the RWSW reinforced bending beams were compared with the primary aim of this study which was to examine and present the contribution of RWSWs on the improvement of the bending performance of the reinforced concrete beams. The results revealed that the mechanical properties of the hybrid beams with RWSWs vary depending on dosages but are comparable with those of the beams-only with the same fibre dosage. A positive effect was obtained for the hybrid beams containing 2–3% RWSWs. Besides, RWSWs were found to be highly well mobilised at larger crack widths, and the post-cracking strength of RWSW mixes was significantly higher. Considering both mechanical properties of the beams and fresh properties such as the workability, 2% of RWSWs is recommended to be utilised in the reinforced concrete beams. On the other hand, the results were compared with the predictions of the methods given in the literature and standards. Moreover, an equation was derived to better predict the capacity of the hybrid beams using RWSWs. © 2023 The AuthorsArticle Citation - WoS: 5Citation - Scopus: 5Experimental Investigation and Analytical Verification of Buckling of Functionally Graded Carbon Nanotube-Reinforced Sandwich Beams(Elsevier Ltd, 2024) Madenci, E.; Özkılıç, Y.O.; Bahrami, A.; Aksoylu, C.; Asyraf, M.R.M.; Hakeem, I.Y.; Beskopylny, A.N.Carbon nanotube (CNT) reinforcement can lead to a new way to enhance the properties of composites by transforming the reinforcement phases into nanoscale fillers. In this study, the buckling response of functionally graded CNT-reinforced composite (FG-CNTRC) sandwich beams was investigated experimentally and analytically. The top and bottom plates of the sandwich beams were composed of carbon fiber laminated composite layers and hard core. The hard core was made of a pultruded glass fiber-reinforced polymer (GFRP) profile. The layers of FG-CNTRC surfaces were reinforced with different proportions of CNT. The reference sample was made of only a pultruded GFRP profile. In the study, the reference sample and four samples with CNT were tested under compression. The largest buckling load difference between the reference sample and the sample with CNT was 37.7%. The difference between the analytical calculation results and experimental results was obtained with an approximation of 0.49%–4.92%. Finally, the buckling, debonding, interlaminar cracks, and fiber breakage were observed in the samples. © 2024 The AuthorsArticle Citation - WoS: 13Citation - Scopus: 17Influence of Ceramic Waste Powder on Shear Performance of Environmentally Friendly Reinforced Concrete Beams(Nature Research, 2024) Özkılıç, Y.O.; Althaqafi, E.; Bahrami, A.; Aksoylu, C.; Karalar, M.; Özdöner, N.; Shcherban, E.M.This investigation considered the usability of ceramic waste powder (CWP) in altered quantities in reinforced concrete beams (RCBs). In this way, it was aimed to reduce the environmental impacts of concrete by using CWP as a raw material in RCBs. 12 small-scale shear RCBs with the dimensions of 100 × 150 × 1000 mm were tested in this study. The variations of stirrups spacing and CWP ratio were examined in these specimens. The percentages of CWP by weight utilized in RCBs were 10%, 20%, and 30%, and stirrups spacings were adopted as 270 mm, 200 mm, and 160 mm. At the end of the study, it was determined that more than 10% CWP additive negatively affected the RCBs' compressive strength. The load-carrying capacity reduced between 30.3% and 59.4% when CWP increased from 0% to 30% as compared to RCB with stirrups spacing of 270 mm without CWP. However, compared to RCB with stirrups spacings of 200 mm and 160 mm without CWP, there were decreases in the load-carrying capacity as 21.4%–54.3% and 18.6%–54.6%, respectively. While the CWP ratio increased, the specimens with 160 mm, 200 mm, and 270 mm stirrups spacings obtained a lower maximum load value. However, with the increase of the CWP ratio in the specimens with 160 mm stirrups spacing, RCBs reached the maximum load-carrying capacity at an earlier displacement value. When stirrups spacing was selected as 270 mm, it was observed that the maximum load-carrying capacity of RCBs reached at a similar displacement value as the CWP ratio increased. Besides, it was resulted that the bending stiffness of RCBs reduced as the quantity of CWP enhanced. The bending stiffness decreased by 29.1% to 66.4% in the specimens with 270 mm stirrups spacing, 36.3% to 20.2% with 200 mm stirrups spacing, and 10.3% to 36.9% with 160 mm stirrups spacing. As an implication of the experiments, the use of CWP up to 10% in RCBs was realized as an economical and environmental approach and is suggested. There is some evidence to report that making use of CWP may be considered to be ecologically benign. This is due to the fact that reusing CWP may significantly reduce CO2 emissions, save energy, and reduce total power consumption. Furthermore, the experimental results were compared to the analytical calculations. © The Author(s) 2024.

