Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Browse GCRIS
Entities
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Aslan, Murat"

Filter results by typing the first few letters
Now showing 1 - 5 of 5
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Doctoral Thesis
    Ayrık Optimizasyon Problemlerinin Çözümü için Jaya Algoritması Tabanlı Yeni Yaklaşımlar
    (Konya Teknik Üniversitesi, 2020) Aslan, Murat; Gündüz, Mesut
    Jaya algoritması, kısıtlı ve kısıtsız sürekli optimizasyon problemlerinin çözümü için Rao (2016) tarafından literatüre kazandırılan popülasyon tabanlı, stokastik bir metasezgisel algoritmadır. Bu tez kapsamında ikili ve ayrık tam sayı optimizasyon problemlerinin çözümü için Jaya algoritması tabanlı yeni yaklaşımlar geliştirilmiştir. Temel Jaya algoritması sürekli optimizasyon problemlerinin çözümü için geliştirildiğinden dolayı, karar değişilenleri '0' ya da '1' değerlerini alabilen ikili optimizasyon problemlerinin üzerine doğrudan uygulanamaz. Bu kapsamda temel Jaya algoritmasının konum güncelleme mekanizmasında bazı değişiklikler yapılmış olup, ikili optimizasyon problemlerinin çözümü için Jaya algoritması tabanlı yeni yaklaşımlar geliştirilmiştir. Geliştirilen ilk yaklaşım JayaX olarak adlandırılan; temelini Jaya algoritması ve 'özel veya' (XOR) lojik fonksiyonundan alan yaklaşımdır. Diğer yaklaşım ise JayaX algoritmasının yerel arama yönünü iyileştirmek için JayaX-LSM olarak adlandırılan, önerilen JayaX algoritmasının ve LSM olarak adlandırılan yerel arama modülünün birlikte kullanılması ile geliştirilen yaklaşımdır. İkili optimizasyon problemlerinin çözümü için önerilen algoritmaların performans analizi için deney aşamasında: Kapasitesiz tesis yerleştirme problemi (KTYP), CEC 2015 nümerik fonksiyonları ve rüzgâr türbini yerleştirme problemi kullanılmıştır. İlk deneysel analiz KTYP problemi için yapılmıştır. Önerilen algoritmaların performansını analiz etmek ve doğrulamak için deneylerde 15 farklı KTYP kullanılmıştır. Önerilen algoritmalar yakın zamanda literatüre kazandırılmış PSO, ABC, TSA, DE ve GA tabanlı başarılı ikili optimizasyon algoritmalarının sonuçları ile karşılaştırılmıştır. Elde edilen deneysel sonuçlara göre, önerilen algoritmalar, KTYP'yi çözme konusunda, karşılaştırılan diğer algoritmalar ile eşit ya da daha iyi sonuçlar elde etmiştir. İkinci deneysel analiz ise 15 kıyas probleminden oluşan CEC 2015 nümerik veri seti üzerine olmuştur. Bu analizde, JayaX-LSM algoritması SabDE, BQIGSA, GBABC, BHTPSO-QI, BLDE ve SBHS algoritmalarının sonuçları ile karşılaştırılmıştır ve elde edilen deneysel sonuçlar dikkate alındığında JayaX-LSM algoritması, karşılaştırılan algoritmalar ile rekabetçi ya da daha iyi çözümler elde etmiştir. Bu bölümde yapılan son deneysel analiz ise rüzgâr türbini yerleştirme problemi için yapılmıştır. Deneylerde 10×10 ve 20×20'lik olmak üzere iki farklı ızgara yapısı kullanılmıştır. Deneysel sonuçlara göre, JayaX-LSM algoritması karşılaştırmalarda kullanılan GA tabanlı ikili yöntemler, BIWO, BPSO-TVAC, EA, NGHS, DGHS ve binAAA algoritmalarına benzer ya da daha iyi çözümler üretmiştir. Geliştirilen bir diğer yöntem ise ayrık tam sayı optimizasyon problemlerinin çözümü için Jaya algoritması tabanlı DJaya olarak adlandırılan Ayrık Jaya algoritmasıdır. Temel Jaya algoritmasının ayrıklaştırma işlemi için güncelleme mekanizmasında takas, öteleme ve simetri olarak adlandırılan komşuluk operatörleri kullanılmıştır. DJaya'da başlangıç popülasyonu oluşturulurken (N-1) tane aday çözüm rastgele permütasyon ile oluşturulurken, ilk aday çözüm en yakın komşu turu sezgiseli ile oluşturulmaktadır. Ayrıca DJaya'nın elde ettiği çözümlerin kalitesinin arttırılması amacıyla 2-opt yerel arama algoritması da kullanılmıştır. DJaya algoritmasının başarısını ve etkinliğini göstermek amacıyla, deneylerde 14 farklı gezgin satıcı problemi (GSP) kullanılmıştır. Elde edilen deneysel sonuçlar yakın zamanda literatüre kazandırılan başarılı algoritmaların sonuçları ile karşılaştırılmıştır. Deneysel bulgulara göre, DJaya algoritması gezgin satıcı probleminin çözümü için karşılaştırılan algoritmalardan daha başarılı ya da rekabetçi çözümler elde etmiştir.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 67
    Citation - Scopus: 79
    Djaya: a Discrete Jaya Algorithm for Solving Traveling Salesman Problem
    (ELSEVIER, 2021) Gündüz, Mesut; Aslan, Murat
    Jaya algorithm is a newly proposed stochastic population-based metaheuristic optimization algorithm to solve constrained and unconstrained continuous optimization problems. The main difference of this algorithm from the similar approaches, it uses best and worst solution in the population in order improve the intensification and diversification of the population, and this provides discovering potential solutions on the search space of the optimization problem. In this study, we propose discrete versions of the Jaya by using two major modifications in the algorithm. First is to generate initial solutions by using random permutations and nearest neighborhood approach to create population. Second is the update rule of the basic Jaya algorithm rearranged to solve discrete optimization problems. Due to characteristics of the discrete optimization problem, eight transformation operators are used for the discrete variants of the proposed algorithm. Based on these modifications, the discrete Jaya algorithm, called DJAYA, has been applied to solve fourteen different symmetric traveling salesman problem, which is one of the famous discrete problems in the discrete optimization. In order to improve the obtained best solution from DJAYA, 2-opt heuristic is also applied to the best solution of DJAYA. Once population size, search tendency and the other parameters of the proposed algorithm have been analyzed, it has been compared with the state-of-art algorithms and their variants, such as Simulated Annealing (SA), Tree-Seed Algorithm (TSA), State Transition Algorithm (STA) Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), Genetic Algorithm (GA) and Black Hole (BH). The experimental results and comparisons show that the proposed DJAYA is highly competitive and robust optimizer for the problem dealt with the study. (C) 2021 Elsevier B.V. All rights reserved.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 10
    Citation - Scopus: 7
    A Jaya-Based Approach To Wind Turbine Placement Problem
    (TAYLOR & FRANCIS INC, 2023) Aslan, Murat; Gündüz, Mesut; Kıran, Mustafa Servet
    Renewable energy resources are natural, clean, economical, and never-ending energy resources. Wind energy is an important clean, cheap, and easy applicable energy sources. On account of this, generation of the energy from wind technology has been raised day by day because of the competition with fossil-fuel power production methods. By depending on increases the number of turbines located in the wind farm, the average power obtains from each wind turbine appreciable reduces due to the existence of wake effects within the wind farm. Therefore, the optimal placement of turbines in a wind farm provides to get optimum wind energy from the wind farm. When the place where the wind turbines are located is considered as NxN grid, a wind turbine can be established to each cell of this grid. Whether a wind turbine is replaced to each cell of the grid or not can be modeled as a binary-based optimization problem. In this study, a Jaya-based binary optimization algorithm is proposed to determine which cells are used for wind turbine replacement. In order to justify the efficiency of the proposed approach, two different test cases are considered, and the solutions produced by the proposed approach are compared with the solutions of the swarm intelligence or evolutionary computation methods. According to the experiments and comparisons the Jaya-based binary approach shows a superior performance than compared approaches in terms of cost and power effectiveness. While the efficiency of the Jaya-based approach is 92.2% with 30 turbines replacement on 10 x 10 grid, the efficiency of the Jaya-based binary method is 95.7% with 43 turbines replacement on 20 x 20 grid.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 89
    Citation - Scopus: 97
    Jayax: Jaya Algorithm With Xor Operator for Binary Optimization
    (ELSEVIER, 2019) Aslan, Murat; Gündüz, Mesut; Kıran, Mustafa Servet
    Jaya is a population-based heuristic optimization algorithm proposed for solving constrained and unconstrained optimization problems. The peculiar distinct feature of Jaya from the other population-based algorithms is that it updates the positions of artificial agent in the population by considering the best and worst individuals. This is an important property for the algorithm to balance exploration and exploitation on the solution space. However, the basic Jaya cannot be applied to binary optimization problems because the solution space is discretely structured for this type of optimization problems and the decision variables of the binary optimization problems can be element of set [0,1]. In this study, we first focus on discretization of Jaya by using a logic operator, exclusive or - xor. The proposed idea is simple but effective because the solution update rule of Jaya is replaced with the xor operator, and when the obtained results are compared with the state-of-art algorithms, it is seen that the Jaya-based binary optimization algorithm, JayaX for short, produces better quality results for the binary optimization problems dealt with the study. The benchmark problems in this study are uncapacitated facility location problems and CEC2015 numeric functions, and the performance of the algorithms is compared on these problems. In order to improve the performance of the proposed algorithm, a local search module is also integrated with the JayaX. The obtained results show that the proposed algorithm is better than the compared algorithms in terms of solution quality and robustness. (C) 2019 Elsevier B.V. All rights reserved.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 4
    Citation - Scopus: 6
    Modified Coot Bird Optimization Algorithm for Solving Community Detection Problem in Social Networks
    (Springer London Ltd, 2024) Aslan, Murat; Koç, İsmail
    Community detection (CD) is a powerful way to extract meaningful information from networks such as political election networks, biological networks, social networks, technological networks. This study proposes a modified discrete version of Coot bird natural life model (COOT) optimization algorithm to solve CD problem in the networks. The basic COOT method is based on the different collective behaviors of the birds of the coot family. These collective actions of coots are regular and irregular movements on the water surface. The position update rule of the basic COOT method does not provide a balance between exploitation and exploration ability for the problem addressed in this study. Therefore, a new update mechanism is integrated into the basic COOT method to extend the local and global search tendencies of the basic COOT method. In the proposed COOT method (for short MCOOT), in order to create a new position for the current coot individual, first the original update mechanism of COOT method is carried out; then, the proposed update mechanism is executed. Three important modifications have been made in the new update mechanism: (1) Some dimensions of the current coot individual are randomly selected in the range of 1 to the dimension size of the problem; (2) the selected dimensions of the coot individual are updated according to the proposed update rule; (3) a genetic mutation operator is executed on the current coot position according to a mutation probability to improve the exploration ability. Furthermore, in the proposed MCOOT method, the continuous values of the current coot positions are converted to discrete values, because the CD problem is a discrete problem. Based on these modifications, in order to analyze and validate the effectiveness of the proposed MCOOT, it is applied on ten different small-sized or large-sized network problems. Finally, the experimental results of MCOOT method are compared with those of some state-of-the-art optimization methods in terms of solution quality and time evaluation. According to the experiments of our study, the proposed algorithm is obtained the best results for all community detection problems used in this study when compared with 22 other algorithms. As a result, the proposed method achieves superior or comparable performance in terms of solution quality and robustness according to the general results. Therefore, the proposed method can be much more competitive, especially for discrete problems.
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH

Log in to GCRIS Dashboard

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback