Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Browse GCRIS
Entities
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Aslan, Mehmet"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Investigation of the Catalytic Effect of Cobalt Based Metallic Nano Catalyst on the Potassium Boron Hydride Hydrolysis Reaction
    (Konya Technical University, 2021) Onat, Erhan; Aslan, Mehmet; İzgi, Mehmet Sait
    Metal hydrides are the leading boron based compounds used in hydrogen storage. Potassium boron is hydride; low cost, non-toxic, stable at high temperatures of these compounds, etc. as it is an important source of hydrogen storage due to its properties. Potassium boron hydride, which provides hydrogen as much as the hydrogen supplied from water as a result of hydrolysis, provides many advantages if it is used as a hydrogen source. In this study, the catalytic parameters of bimetallic nanocatalyst synthesized from cobalt (Co) and chromium (Cr) were investigated so as to use in potassium boron hydride hydrolysis. For the catalyst synthesis and effect, the optimum data for the hydrolysis reaction were obtained in the light of metal incorporation ratio, solvent medium, catalyst amount, potassium borohydride concentration and temperature parameters, respectively. Under the best conditions, the hydrogen production rate was determined as 2448.24 mL/g.min. As a result of repeated use to determine the catalyst performance, it was determined that 100% product yield was achieved until the 8th use. When the reaction kinetics were examined, it was determined that the reaction was of the 0 th order and the activation energy of the reaction was 41.3 kJ/mol. As a result of the study, it is considered that the use of Co-Cr catalyst for hydrogen production will be appropriate if potassium boron hydride is used as a hydrogen source in fuel cells. Since potassium borohydride stores less hydrogen than other hydrogen-storing compounds, it has not been studied much until now. However, as shown in this study, it enables pretty high hydrogen production. Therefore, it is expected to encounter many similar studies in the future.
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH

Log in to GCRIS Dashboard

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback