Browsing by Author "Arici, Gokhan"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article Cyclic Oxidation Behavior and Protective Oxide Scale Formation in Stainless-Steel Alloys for High-Temperature Exhaust Valve Applications(MDPI, 2025) Cetinkal, Salih Bilal; Atas, Mehmet Sahin; Salur, Emin; Savkliyildiz, Ilyas; Subutay, Halit; Arici, Gokhan; Alhazaa, AbdulazizAs internal combustion engine (ICE) systems are increasingly exposed to severe thermal and oxidative environments, the oxidation resistance and structural integrity of exhaust valve materials have become critical for maintaining long-term engine reliability and efficiency. This study presents a comparative evaluation of the cyclic oxidation behavior of two candidate valve steels, 1.4718 (ferritic stainless steel) and 1.4871 (austenitic stainless steel), under service-temperature conditions. The specimens were exposed to repeated oxidation at 550 degrees C, 650 degrees C and 750 degrees C for 25 cycles in ambient air. The surface and cross-sectional morphologies of the oxide layers were analyzed using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) to investigate oxide scale composition, thickness, and growth characteristics. The oxidation behavior of both alloys proceeded in two distinct stages: an initial phase marked by accelerated oxidation, followed by a slower, more stable growth period. The extent of oxidation intensified with increasing temperature. The 1.4718 alloy developed relatively porous but compositionally stable oxide layers consisting primarily of Fe- and Cr-based spinels such as FeCr2O4 and Cr2SiO4. In contrast, the 1.4871 alloy formed a dense, adherent, dual-layered oxide scale composed of an outer Mn2O3-rich layer and an inner Cr2O3-rich layer, attributable to its high Mn and Cr content. The results underscore the critical influence of elemental composition, particularly Cr, Mn and Si, on oxide scale stability and spallation resistance, demonstrating the superior cyclic oxidation resistance of the 1.4871 alloy and its potential suitability for exhaust valve applications in thermally aggressive environments.Article Reusing Cast Iron Slag Waste as a Material Development by Flash Sintering(Springer, 2025) Cetinkaya, Zeynep; Arici, Gokhan; Ozturk, BenginurThe materials sintered with FS are determined by considering temperature, time, energy, cost, environmental pollution, and human health. In this study, cast iron slag wastes (CISW) were utilized in powder form and sintered using flash sintering (FS). The outcomes of both FS and conventional sintering (CS) processes were assessed regarding their physical, chemical, and mechanical properties. The CS process was performed at 1000 degrees C for 4 h. FS experiments were conducted under 20, 25, and 30 V/mm electric fields. CISW was sintered using the FS method resulting in lower temperatures and shorter processing times, thus yielding energy savings. Through this method, it was observed that the interatomic spaces narrowed due to the electric field and temperature applied to the sample. Physical, chemical, and mechanical tests (3-point bending and hardness) were carried out on all sintered materials. Experimental results indicated that the sample sintered under the 20 V/mm electric field at 517 degrees C for 15 s exhibited better mechanical properties compared to CS. On the other hand, the sample flash sintered under 30 V/mm electric field had lower temperatures (478 degrees C) compared to all FS processes that were carried out with perfect intergranular interactions. However, the mechanical properties were lower than the others because the structures may have passed into the liquid phase. Consequently, it has been proven that this product obtained from CISWs can be used in floor and wall tiles according to ISO10545-4 and BS-EN14411:2016 standards. It has better mechanical strengths than all other sintering processes with FS under 20 V/mm electric field.Article Ultrahigh Antibacterial Response and Biochemical Activity in Mg-Sn-HA Material Systems(Elsevier Sci Ltd, 2025) Subutay, Halit; Gunes, Eda; Erci, Fatih; Acarer, Mustafa; Salur, Emin; Arici, Gokhan; Savkliyildiz, IlyasThe effects of metallic tin(Sn) and hydroxyapatite(HA) ceramic particles on metallic magnesium's mechanical properties and antibacterial (S.aureus) response along with bioactivity (toxicity) against D.melanogaster larvae, including the impact on survival, development, sex, longevity, were studied. Three different variations of self-assembled Mg-based materials were synthesized by mechanical alloying and densification of the samples was accomplished by hot press sintering. SEM analysis reveals that the smallest particle morphology was obtained in the Mg-3Sn alloy wherein excessive plastic deformation resulted in a monodisperse particle distribution, enabling uniform distribution of reinforcing elements. The most significant gain in mechanical properties was observed in the Mg-Sn system in which the formation of the Mg2Sn intermetallic results Brinell hardness of 184, corresponding similar to 500 % increase relative to pure Mg. The intermetallic Mg2Sn phase and its high-volume fraction in the Mg matrix leads hardening by the Orowan mechanism. In all treatment groups, the overall survival rate is >= 80 %, which shows that the produced alloys and composites are not neither toxic nor lethal to the model organisms. According to the survival rate and development time data, it was determined that the sex of the organisms shifted in favor of the first group (males) and the second group (females), while the oxidative stress (OSI) increased in organisms in contact with the first group (males). The Mg-HA and Mg-Sn-HA systems exhibit superb antibacterial properties, showing complete inhibition of S.aureus after 24-h incubation period. Overall, such alloys could have a significant impact on a range of clinical and biomedical applications because of their outstanding antibacterial properties as demonstrated in this study.

