Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Browse GCRIS
Entities
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Alçay, Salih"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 4
    Citation - Scopus: 4
    Analysis of Ionospheric Vtec Retrieved From Multi-Instrument Observations
    (MDPI, 2024) Öztan, Gürkan; Duman, Huseyin; Alçay, Salih; Öğütçu, Sermet; Özdemir, Behlül Numan
    This study examines the Vertical Total Electron Content (VTEC) estimation performance of multi-instruments on a global scale during different ionospheric conditions. For this purpose, GNSS-based VTEC data from Global Ionosphere Maps (GIMs), COSMIC (F7/C2)-Feng-Yun 3C (FY3C) radio occultation (RO) VTEC, SWARM-VTEC, and JASON-VTEC were utilized. VTEC assessments were conducted on three distinct days: geomagnetic active (17 March 2015), solar active (22 December 2021), and quiet (11 December 2021). The VTEC values of COSMIC/FY3C RO, SWARM, and JASON were compared with data retrieved from GIMs. According to the results, COSMIC RO-VTEC is more consistent with GIM-VTEC on a quiet day (the mean of the differences is 4.38 TECU), while the mean of FY3C RO-GIM differences is 7.33 TECU on a geomagnetic active day. The range of VTEC differences between JASON and GIM is relatively smaller on a quiet day, and the mean of differences on active/quiet days is less than 6 TECU. Besides the daily comparison, long-term results (1 January-31 December 2015) were also analyzed by considering active and quiet periods. Results show that Root Mean Square Error (RMSE) values of COSMIC RO, FY3C RO, SWARM, and JASON are 5.02 TECU, 6.81 TECU, 16.25 TECU, and 5.53 TECU for the quiet period, and 5.21 TECU, 7.07 TECU, 17.48 TECU, and 5.90 TECU for the active period, respectively. The accuracy of each data source was affected by solar/geomagnetic activities. The deviation of SWARM-VTEC is relatively greater. The main reason for the significant differences in SWARM-GIM results is the atmospheric measurement range of SWARM satellites (460 km-20,200 km (SWARM A, C) and 520 km-20,200 km (SWARM B), which do not contain a significant part of the ionosphere in terms of VTEC estimation.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 1
    Data Integrity and Quality Analysis of Low Cost Zed-F9p U-Blox Gnss Receiver
    (2023) Öğütcü, Sermet; Alçay, Salih; Duman, Hüseyin; Özdemir, Behlül Numan; Koray, Ülkünur
    Thanks to the rapidly emerging low-cost dual-frequency GNSS receivers, a feasible alternative for geodetic-grade GNSS receivers became available for some GNSS applications. In this study, the performance of data integrity and quality of a low-cost ZED-F9P u-blox GNSS receiver was investigated by comparing it with a geodetic-grade GNSS receiver. Availability of the epoch and phase/code signal channels, signal-to-noise ratio (SNR), code multipath, and cycle slips were analyzed for the geodetic-grade and low-cost ZED-F9P u-blox GNSS receivers. One month’s data of GPS, GLONASS, and Galileo constellations were analysed using the RINEX files of the receivers. The results showed that the epoch availability of the geodetic-grade and u-blox GNSS receiver is comparable to each other, while the availability of phase/code signal channels of the geodetic-grade receiver is higher than the u-blox receiver. In terms of data quality, SNR values from both receivers are comparable, while the multipath level of the u-blox GNSS receiver is significantly higher than the geodetic-grade one. The results also showed that the number of cycle slips of the u-blox receiver is significantly higher than the geodetic-one.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 3
    Citation - Scopus: 4
    Grims: Global and Regional Ionosphere Monitoring System
    (Springer Heidelberg, 2024) Özdemir, Behlül Numan; Alçay, Salih; Öğütçü, Sermet; Pekgör, Ahmet; Seemala, Gopi Krishna; Öztan, Gürkan
    The ionosphere shows regular changes such as daily, 27 days, seasonal, semi-annual, annual, and 11 years. These changes can be modeled and their effects largely determined. However, in addition to regular changes, irregular changes occur in the ionosphere due to space weather conditions, natural disasters, and human-induced irregularities. GNSS is one of the instruments along with many others that can give a piece of information on the ionospheric state. Various indices/parameters are used to determine the effect of space weather conditions. The well-known ones are solar activity indices, geomagnetic storm indices, magnetic field components, proton density, and proton flux parameters. It is important to take all of these indices into consideration when investigating the source of the anomaly. Considering only some of them may lead to incorrect inferences about the source of possible anomalies. To carry out comprehensive research in this field, it is necessary to analyze a very large data set. This indicates the requirement for an automatic system. With the Global and Regional Ionosphere Monitoring System (GRIMS) designed within the scope of this study, the ionosphere can be monitored globally and regionally. The GRIMS is online at https://www.online-grims.com/. By using Global ionospheric maps and GNSS receiver data, global, regional, and station-specific anomalies can be detected regularly through methods such as HDI (Highest Density Interval) and ARIMA (Autoregressive Integrated Moving Average). GRIMS gathers space weather-related parameters from ionospheric data centers to help users interpret the situation, and it allows users to download the results and request data for specific days. The details of the experimental results and output products of the system designed during the geomagnetic active days of March 17, 18, 2015 are given in this paper. Moreover, geomagnetic active days that occurred between 2000 and 2023 are given in the GRIMS.
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH

Log in to GCRIS Dashboard

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback