Browsing by Author "Akceylan, Ezgi"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation - WoS: 8Citation - Scopus: 7Fluorescence Switchable Sensor Enabled by a Calix[4]arene-Cu(ii) Complex System for Selective Determination of Itraconazole in Human Serum and Aqueous Solution(Elsevier, 2022) Akceylan, Ezgi; Erdemir, Serkan; Tabakçı, Mustafa; Sivrikaya, Abdullah; Tabakçı, BegümA switchable fluorescence sensor based on a calix (Monapathi et al., 2021) [4]arene:Cu2+ complex (FLCX/Cu) has been developed for the detection of itraconazole (ITZ) with high sensitivity and specificity. For the devel-opment of the sensor, the selective complexation of a fluorescent calix (Monapathi et al., 2021) [4]arene de-rivative (FL-CX) with the Cu2+ ion causing fluorescence quenching was utilized. In addition, the sensor properties of the FLCX/Cu prepared were investigated. For this purpose, various substances (selected anions, cations, and drugs) with which ITZ can be found together were studied in an aqueous solution. Limit of detection (LOD) and limit of quantification (LOQ) values were determined in the range of 1.00-60.0 mu g/L as 3.34 mu g/L and 11.1 mu g/L for ITZ, respectively. Moreover, the real sample analyses were performed in human serum and tablet form. Furthermore, the effect of some possible serum contents on sensor performance was also studied. All these studies confirmed the development of a simple, precise, accurate, reproducible, highly sensitive, and very stable fluorescence sensor.Article Removal of Some Phenolic Pollutions From Aqueous Solutions by Magnetic Nanoparticles Containing Imidazole-Derivatized Calix[4]arene(Konya Technical University, 2021) Akceylan, Ezgi; Erdemir, Serkan; Özçelik, Egemen; Tabakci, BegümIn this paper, it was aimed to synthesize imidazole-derived calix[4]arenes, immobilize these compounds to [3-(2,3-epoxypropoxy)-propyl]-trimetoxysilane (EPPTMS) modified Fe3O4 nanoparticles and to investigate adsorption properties of the obtained nanoparticles for some phenolic pollutants. For this purpose, firstly, a series of calix[4]arene derivatives (1, 2, 3, 4, 5, 6, 8) were synthesized according to the literature procedures and their structures were verified to synthesize the target compounds. Compound 6 among of these compounds was reacted with imidazole by the Mannich reaction to achieve target 7. On the other hand, calix[4]arene derivative bearing two distal bromo groups 8 was also reacted with imidazole to achive other target compound 9. The structure of both compounds was confirmed by 1H NMR spectroscopy. Thus, two different calix[4]arene derivatives were prepared from both the lower region and the upper region of the calix[4]arene with functional imidazole groups. These compounds were then immobilized to the EPPTMS modified Fe3O4 nanoparticle to obtain calix[4] arene-bonded new magnetic nanoparticles (C-7-BMN and C-9-BMN) bearing the imidazole group. These new nanoparticles were used as adsorbents in the adsorption of phenol (PHE), p-chlorophenol (pCF) and p-nitrophenol (pNP) from the aqueous solution. Concentrations of solution were determined by HPLC and adsorption results were calculated. The results revealed that C-9-BMN performed the highest adsorption for pCF at pH 6, while C-7-BMN showed no remarkable adsorption for any phenolic species. It has been understood that electrostatic interactions and hydrogen bond interactions are particularly important in the adsorption process and they are closely related to the structure of the adsorbent species depending on the ambient conditions. As a result, using the C-9-BMN adsorbent prepared in this study, the adsorption method, pCF, which is a toxic phenolic species, was removed from the aqueous solutions in a remarkable efficiency.
