Browsing by Author "Özkilic, Yasin Onuralp"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation - WoS: 7Citation - Scopus: 9Experimental and Numerical Investigation of the Structural, Thermal and Acoustic Performance of Reinforced Concrete Slabs With Balls for a Cleaner Environment(Springer Int Publ Ag, 2023) Arslan, Musa Hakan; Özkilic, Yasin Onuralp; Arslan, H. Derya; Sahin, Ömer SinanThis study conducted a comprehensive experimental and numerical assessment to investigate the effect of plastic circular balls placed in the middle of a section of a reinforced concrete slab on strength, ductility, thermal, and acoustic performance. The ball diameter/slab thickness (D/H), grades of concrete, and longitudinal tensile reinforcement ratio (rho) in the slab were selected as the main variables. The variation in thermal and acoustic performance depending upon the ball's diameter was investigated as well. The results showed that the slab's load-carrying capacity, ductility, and energy dissipation capacity did not differ if the D/H ratio did not exceed 0.4; however, significant decreases in these values were observed when the D/H ratio exceeded 0.4. Moreover, the increase in the concrete and reinforcement's strength had a negative effect on the slab with a D/H ratio of 0.8. The experimental results revealed that balled slabs are 3.15 times superior with respect to thermal conductivity and provide 1.38 times more insulation to absorb sound compared to non-balled slabs. In the numerical study of the slabs' thermal performance, the mean surface temperature and heat flux on the slab where the heat transfer takes place decreased as the ball diameter increased. As seen in acoustic models, the level at which the slabs absorbed sound varied depending upon both the diameter of the balls and the sound frequency.Article Citation - WoS: 69Citation - Scopus: 74Improvement in Bending Performance of Reinforced Concrete Beams Produced With Waste Lathe Scraps(MDPI, 2022) Karalar, Memduh; Özkilic, Yasin Onuralp; Deifalla, Ahmed Farouk; Aksoylu, Ceyhun; Arslan, Musa Hakan; Ahmad, Mahmood; Sabri, Mohanad Muayad SabriIn this study, the impacts of different proportions of tension reinforcement and waste lathe scraps on the failure and bending behavior of reinforced concrete beams (RCBs) are clearly detected considering empirical tests. Firstly, material strength and consistency test and then 1/2 scaled beam test have been carried out. For this purpose, a total of 12 specimens were produced in the laboratory and then tested to examine the failure mechanism under flexure. Two variables have been selected in creating text matrix. These are the longitudinal tension reinforcement ratio in beams (three different level) and volumetric ratio of waste lathe scraps (four different level: 0%, 1%, 2% and 3%). The produced simply supported beams were subjected to a two-point bending test. To prevent shear failure, sufficient stirrups have been used. Thus, a change in the bending behavior was observed during each test. With the addition of 1%, 2% and 3% waste lathe scraps, compressive strength escalated by 11.2%, 21.7% and 32.5%, respectively, compared to concrete without waste. According to slump test results, as the waste lathe scraps proportion in the concrete mixture is increased, the concrete consistency diminishes. Apart from the material tests, the following results were obtained from the tests performed on the beams. It is detected that with the addition of lathe waste, the mechanical features of beams improved. It is observed that different proportions of tension reinforcement and waste lathe scraps had different failure and bending impacts on the RCBs. While there was no significant change in stiffness and strength, ductility increased considerably with the addition of lathe waste.

