Bilgisayar ve Bilişim Fakültesi Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.13091/10834
Browse
Browsing Bilgisayar ve Bilişim Fakültesi Koleksiyonu by Access Right "info:eu-repo/semantics/openAccess"
Now showing 1 - 20 of 135
- Results Per Page
- Sort Options
Doctoral Thesis 3d Lidar Nokta Bulutu İşlemede Sınır Gözetimli Voksel Tabanlı Bir Segmentasyon Yöntemi Geliştirilmesi(Konya Teknik Üniversitesi, 2020) Sağlam, Ali; Baykan, Nurdanİç ve dış mekânlarda bulunan yapı ve nesneler Lidar (ışık algılayan ve mesafe ölçen) sistemler ile taranarak nokta bulutu halinde, üç boyutlu (3D) ve renkli olarak dijital ortamlara aktarılabilmektedir. Lidar taramasıyla elde edilen, yapı ve nesneler hakkında detaylı bilgi sağlayan bu 3D nokta bulutu verisinin elemanları olan noktalar, organize edilmiş bir veri yapısı içerisinde konumlandırılmamış olarak düzensiz bir şekilde gelmektedir. Günümüzde Lidar teknolojisindeki gelişmeler, nokta bulutu verilerinin kalitesini artırmasının (daha az konum hatası ve daha yüksek çözünürlüklü olarak) yanında, çok yüksek miktarlarda düzensiz veri yığınını da getirmiştir. Çok yüksek boyuttaki bir veriden benzer özellikteki ve konumsal yakınlığı olan verileri gruplayarak, işlenecek veri sayısını düşürmekle birlikte veriden daha anlamlı bilgiler çıkarılmasını da sağlayan işleme segmentasyon denilmektedir. Segmentasyon, 3D nokta bulutu işlemeyi de kapsayan bilgisayarlı görme alanında büyük miktarda veri ile uğraşmayı gerektiren uygulamalar için oldukça yüksek bir öneme sahiptir. Segmentasyon işleminin de karmaşık veriler üzerinde istenilen özelliklerde ve sürede sonuç vermesi, bilgisayarlı görme alanında ayrı bir uğraş konusu olmuştur. Tez çalışmasında, 3D nokta bulutu işlemede, uygulamanın başarısını önemli oranda etkileyen segmentasyon işleminin daha başarılı ve hızlı bir şekilde yapılabilmesi için yeni bir voksel tabanlı segmentasyon yöntemi geliştirilmiştir. Geliştirilen yöntem, yüzeylerdeki lokal nokta gruplarının oluşturdukları düzlemsel yapıların eğim açıları ve ağırlık merkezleri gibi basit geometrik özelliklerini kullanarak segmentasyon işlemini gerçekleştirebilmiştir. Tez kapsamında, literatürde kullanılan veri setlerinin özellikleri dikkate alınarak, benzer şekilde bir adet iç ve iki adet dış mekânsal ortam, bir karasal Lidar sistemi ile taranarak üç farklı 3D nokta bulutu verisi temin edilmiştir. Elde edilen ham nokta verileri, oluşturulan veri setinin kullanım amacına göre indirgeme, kırpma ve gürültü giderme gibi ön işlemlerden geçirildikten sonra, segmentasyon referans segmentleri de hazırlanarak üç adet veri seti oluşturulmuştur. Tez kapsamında hazırlanan veri setlerine ek olarak, literatürden de iki adet daha segmentasyon veri seti temin edilmiş ve böylece toplam beş adet veri seti segmentasyon karşılaştırmasında kullanılmıştır. Veri setlerinin temin edilmesinin ardından, yöntemlerin nicel değerler üzerinden karşılaştırması aşamasına kadar olan geliştirme ve iyileştirme aşamaları iki ayrı koldan eş zamanlı olarak ilerlemiştir. Bunlardan birisi sekiz dallı ağaç (octree) organizasyonu ile veriyi vokselleme tekniğinin, düzlem özelliği göstermeyen vokseller için yeniden düzlem uydurma ön işleminin ve geliştirilen segmentasyon yönteminin kodlanması aşamalarıdır. Diğeri ise karşılaştırma için literatürde başarı göstermiş segmentasyon yöntemlerinin belirlenmesi, bunların temin edilmesi veya yeniden kodlanması ve nicel karşılaştırma için doğruluk ve F1 skor değerleri hesaplama yöntemlerinin kodlanması aşamalarıdır. Bütün bu geliştirme, iyileştirme ve kodlama aşamaları tamamlandıktan sonra uygulanan yöntemlerin tez kapsamında kullanılan veri setleri üzerindeki segmentasyon çıktılarının doğruluk ve F1 skor sonuçları alınarak, başarı ve çalışma süresi açısından karşılaştırma analizleri yapılmıştır. Geliştirilen yöntem, 0.81 ortalama doğruluk değeri ve 0.69 ortalama F1 skor değeri ile literatürde bulunan ve benzer şekilde noktaların geometrik özelliklerini kullanarak segmentasyon yapan diğer yöntemlere göre segmentasyon başarısı ve hız açısından üstünlük elde etmiştir. Tez kapsamında ayrıca, nokta bulutundaki noktaların renk değerlerinin farklılıkları da belirli etki oranlarında segmentasyona dâhil edilmiş ve renk kalitesi yüksek iç mekân verisinde başarı arttırılmıştır. Tez kapsamında daha sonra, geliştirilen yöntemin farklı parametre değerleri ile literatürden alınan yüksek miktarda noktadan oluşan bir iç mekân anlamsal segmentasyon (semantic segmentation) veri seti (S3DIS) üzerindeki ham nokta bulutu sınıflandırmasında ara işlem olarak kullanımı da incelenmiştir. Sınıflandırma işlemi için, öncelikle geliştirilen yöntemle segmentasyon yapılarak veri segmentlere ayrılmış ve her segmentten bir özellik vektörü çıkarılmıştır. Daha sonra da, bu özellik vektörleri kullanılarak sınıflandırma yapılmıştır. Segmentasyon tabanlı sınıflandırma işlemi, Destek Vektör Makinesi (DVM) ve Rastgele Orman (RO) olarak iki farklı sınıflandırıcı ile ayrı ayrı uygulanmıştır. Sınıflandırma işlemlerinin sonuçları da noktaların sınıf etiketlerinin doğruluk ve F1 skor değerleri üzerinden karşılaştırılmıştır. Karşılaştırma sonuçlarına göre, ham nokta bulutundaki noktaların sınıflandırma başarıları DVM için 0.76 doğruluk ve 0.48 F1 skor iken RO için 0.83 doğruluk ve 0.70 F1 skor olmuştur. Sonuçlara bakıldığında kullanılan veri ve özellik setlerine göre RO sınıflandırıcısı DVM sınıflandırıcısından daha iyi sonuç vermiştir.Article A 3d U-Net Based on Early Fusion Model: Improvement, Comparative Analysis With State-Of Models and Fine-Tuning(Konya Teknik Univ, 2024) Kayhan, Beyza; Uymaz, Sait AliMulti-organ segmentation is the process of identifying and separating multiple organs in medical images. This segmentation allows for the detection of structural abnormalities by examining the morphological structure of organs. Carrying out the process quickly and precisely has become an important issue in today's conditions. In recent years, researchers have used various technologies for the automatic segmentation of multiple organs. In this study, improvements were made to increase the multi-organ segmentation performance of the 3D U-Net based fusion model combining HSV and grayscale color spaces and compared with state-of-the-art models. Training and testing were performed on the MICCAI 2015 dataset published at Vanderbilt University, which contains 3D abdominal CT images in NIfTI format. The model's performance was evaluated using the Dice similarity coefficient. In the tests, the liver organ showed the highest Dice score. Considering the average Dice score of all organs, and comparing it with other models, it has been observed that the fusion approach model yields promising results.Article Citation - WoS: 1Academic Text Clustering Using Natural Language Processing(2022) Taşkıran, Fatma; Kaya, ErsinAccessing data is very easy nowadays. However, to use these data in an efficient way, it is necessary to get the right information from them. Categorizing these data in order to reach the needed information in a short time provides great convenience. All the more, while doing research in the academic field, text-based data such as articles, papers, or thesis studies are generally used. Natural language processing and machine learning methods are used to get the right information we need from these text-based data. In this study, abstracts of academic papers are clustered. Text data from academic paper abstracts are preprocessed using natural language processing techniques. A vectorized word representation extracted from preprocessed data with Word2Vec and BERT word embeddings and representations are clustered with four clustering algorithms.Article Citation - WoS: 6Citation - Scopus: 9Ağaç-tohum Algoritmasının Cuda Destekli Grafik İşlem Birimi Üzerinde Paralel Uygulaması(2018) Çınar, Ahmet Cevahir; Kıran, Mustafa ServetSon yıllarda toplanan verinin artmasıyla birlikte verimli hesaplama yöntemlerinin de geliştirilmesi ihtiyacı artmaktadır. Çoğunlukla gerçek dünya problemlerinin zor olması sebebiyle optimal çözümü garanti etmese dahi makul zamanda yakın optimal çözümü garanti edebilen sürü zekâsı veya evrimsel hesaplama yöntemlerine olan ilgi de artmaktadır. Diğer bir açıdan seri hesaplama yöntemlerinde verinin veya işlemin paralelleştirilebileceği durumlarda paralel algoritmaların da geliştirilmesi ihtiyacı ortaya çıkmıştır. Bu çalışmada literatüre son yıllarda kazandırılmış olan popülasyon tabanlı ağaç-tohum algoritması ele alınmış ve CUDA platformu içerisinde paralel versiyonu geliştirilmiştir. Algoritmanın paralel versiyonunun performansı kıyas fonksiyonları üzerinde analiz edilmiş ve seri versiyonunun performansı ile karşılaştırılmıştır. Kıyas fonksiyonlarında problem boyutluluğu 10 olarak alınmış ve farklı popülasyon ve blok sayıları altında performans analizi yapılmıştır. Deneysel çalışmalar algoritmanın paralel versiyonunun algoritmanın seri sürümüne göre bazı problemler için 184,65 kata performans artışı sağladığı görülmüştür.Article Citation - WoS: 29Citation - Scopus: 54Alexnet Architecture Variations With Transfer Learning for Classification of Wound Images(Elsevier B.V., 2023) Eldem, H.; Ülker, E.; Işıklı, O.Y.In medical world, wound care and follow-up is one of the issues that are gaining importance to work on day by day. Accurate and early recognition of wounds can reduce treatment costs. In the field of computer vision, deep learning architectures have received great attention recently. The achievements of existing pre-trained architectures for describing (classifying) data belonging to many image sets in the real world are primarily addressed. However, to increase the success of these architectures in a certain area, some improvements and enhancements can be made on the architecture. In this paper, the classification of pressure and diabetic wound images was performed with high accuracy. The six different new AlexNet architecture variations (3Conv_Softmax, 3Conv_SVM, 4Conv_Softmax, 4Conv_SVM, 6Conv_Softmax, 6Conv_SVM) were created with a different number of implementations of Convolution, Pooling, and Rectified Linear Activation (ReLU) layers. Classification performances of the proposed models are investigated by using Softmax classifier and SVM classifier separately. A new original Wound Image Database are created for performance measures. According to the experimental results obtained for the Database, the model with 6 Convolution layers (6Conv_SVM) was the most successful method among the proposed methods with 98.85% accuracy, 98.86% sensitivity, and 99.42% specificity. The 6Conv_SVM model was also tested on diabetic and pressure wound images in the public medetec dataset, and 95.33% accuracy, 95.33% sensitivity, and 97.66% specificity values were obtained. The proposed method provides high performance compared to the pre-trained AlexNet architecture and other state-of-the-art models in the literature. The results showed that the proposed 6Conv_SVM architecture can be used by the relevant departments in the medical world with good performance in medical tasks such as examining and classifying wound images and following up the wound process. © 2023 Karabuk UniversityArticle Citation - WoS: 3Citation - Scopus: 6Analysis of Machine Learning Classification Approaches for Predicting Students' Programming Aptitude(MDPI, 2023) Çetinkaya, Ali; Baykan, Ömer Kaan; Kırgız, HavvaWith the increasing prevalence and significance of computer programming, a crucial challenge that lies ahead of teachers and parents is to identify students adept at computer programming and direct them to relevant programming fields. As most studies on students' coding abilities focus on elementary, high school, and university students in developed countries, we aimed to determine the coding abilities of middle school students in Turkey. We first administered a three-part spatial test to 600 secondary school students, of whom 400 completed the survey and the 20-level Classic Maze course on Code.org. We then employed four machine learning (ML) algorithms, namely, support vector machine (SVM), decision tree, k-nearest neighbor, and quadratic discriminant to classify the coding abilities of these students using spatial test and Code.org platform data. SVM yielded the most accurate results and can thus be considered a suitable ML technique to determine the coding abilities of participants. This article promotes quality education and coding skills for workforce development and sustainable industrialization, aligned with the United Nations Sustainable Development Goals.Article Citation - WoS: 2Apneic Events Detection Using Different Features of Airflow Signals(MEHRAN UNIV ENGINEERING & TECHNOLOGY, 2019) Göğüş, Fatma Zehra; Tezel, GülayApneic-event based sleep disorders are very common and affect greatly the daily life of people. However, diagnosis of these disorders by detecting apneic events are very difficult. Studies show that analyzes of airflow signals are effective in diagnosis of apneic-event based sleep disorders. According to these studies, diagnosis can be performed by detecting the apneic episodes of the airflow signals. This work deals with detection of apneic episodes on airflow signals belonging to Apnea-ECG (Electrocardiogram) and MIT (Massachusetts Institute of Technology) BIH (Bastons's Beth Isreal Hospital) databases. In order to accomplish this task, three representative feature sets namely classic feature set, amplitude feature set and descriptive model feature set were created. The performance of these feature sets were evaluated individually and in combination with the aid of the random forest classifier to detect apneic episodes. Moreover, effective features were selected by OneR Attribute Eval Feature Selection Algorithm to obtain higher performance. Selected 28 features for Apnea-ECG database and 31 features for MIT-BIH database from 54 features were applied to classifier to compare achievements. As a result, the highest classification accuracies were obtained with the usage of effective features as 96.21% for Apnea-ECG database and 92.23% for MIT-BIH database. Kappa values are also quite good (91.80 and 81.96%) and support the classification accuracies for both databases, too. The results of the study are quite promising for determining apneic events on a minute-by-minute basis.Article Citation - WoS: 3Application of Abm To Spectral Features for Emotion Recognition(MEHRAN UNIV ENGINEERING & TECHNOLOGY, 2018) Demircan, Semiye; Örnek, Humar KahramanlıER (Emotion Recognition) from speech signals has been among the attractive subjects lately. As known feature extraction and feature selection are most important process steps in ER from speech signals. The aim of present study is to select the most relevant spectral feature subset. The proposed method is based on feature selection with optimization algorithm among the features obtained from speech signals. Firstly, MFCC (Mel-Frequency Cepstrum Coefficients) were extracted from the EmoDB. Several statistical values as maximum, minimum, mean, standard deviation, skewness, kurtosis and median were obtained from MFCC. The next process of study was feature selection which was performed in two stages: In the first stage ABM (Agent-Based Modelling) that is hardly applied to this area was applied to actual features. In the second stageOpt-aiNET optimization algorithm was applied in order to choose the agent group giving the best classification success. The last process of the study is classification. ANN (Artificial Neural Network) and 10 cross-validations were used for classification and evaluation. A narrow comprehension with three emotions was performed in the application. As a result, it was seen that the classification accuracy was rising after applying proposed method. The method was shown promising performance with spectral features.Master Thesis Arazi Toplulaştırma Çalışmasında Çok Amaçlı Optimizasyon Tabanlı Dağıtım(Konya Teknik Üniversitesi, 2020) Ortaçay, Zeynep; Uğuz, HarunGerçek hayatta karşılaştığımız problemlerin bir çoğu optimizasyon gerektiren problemlerdir. Bu problemlerin bazıları tek bir hedefe bazıları ise birden fazla hedefe sahiptirler. Tek hedefe sahip problemler tek amaçlı optimizasyon algoritmaları denilen yöntemlerle çözülürler fakat birden fazla hedefi olan problemler bu yöntemlerle çözülmesi zordur. Bu problemler için çok amaçlı optimizasyon algoritmaları olarak adlandırılan yöntemler kullanılmaktadır. Arazi Toplulaştırma (AT) çalışmaları küçük ve dağınık olarak bulunan parsellerin büyük ve bir arada verilmesini amaçlayan bir çalışmadır. AT çalışmasının adımlarından olan Dağıtım aşamasında birden fazla kriter olmasından dolayı çok amaçlı optimizasyon problemi olarak tanımlanır. Bu problemin çözümü için PESA-II, NSGA-II ve Önerilen Hibrit NSGA-II algoritmaları kullanılmıştır. Elde edilen sonuçlar literatürdeki sonuçlar ile karşılaştırılmıştır. Elde edilen sonuçlara göre çok amaçlı optimizasyon algoritmalarının başarılı değerler elde ettiği görülmüştürArticle Automatic Localization of Cephalometric Landmarks Using Convolutional Neural Networks(2021) Nourdine Mogham Njikam Mohamed; Uzbaş, BetülExperts have brought forward interesting and effective methods to address critical medical analysis problems. One of these fields of research is cephalometric analysis. During the analysis of tooth and the skeletal relationships of the human skull, cephalometric analysis plays an important role as it facilitates the interpretation of bone, tooth, and soft tissue structures of the patient. It is used during oral, craniofacial, and maxillofacial surgery and during treatments in orthodontic and orthopedic departments. The automatic localization of cephalometric landmarks reduces possible human errors and is time saving. To performed automatic localization of cephalometric landmarks, a deep learning model has been proposed inspired by the U-Net model. 19 cephalometric landmarks that are generally manually determined by experts are automatically obtained using this model. The cephalometric X-ray image dataset created under the context of IEEE 2015 International Symposium on Biomedical Imaging (ISBI 2015) is used and data augmentation is applied to it for this experiment. A Success Detection Rate SDR of 74% was achieved in the range of 2 mm, 81.4% in the range of 2.5mm, 86.3% in the range of 3mm, and 92.2% in the range of 4mm.Article Aydınlatma Özniteliği Kullanılarak Evrişimsel Sinir Ağı Modelleri İle Meyve Sınıflandırma(2020) Büyükarıkan, Birkan; Ülker, ErkanAydınlatma, nesnelerin olduğu gibi görünmesini sağlayan doğal veya yapay kaynaklardır. Özellikle görüntü işleme uygulamalarında yakalanan görüntüdeki nesne bilgisinin eksiksiz ve doğru şekilde alınabilmesi için aydınlatmanın kullanılması bir gerekliliktir. Ancak aydınlatma kaynağının tür, parlaklık ve konumunun değişimi; nesnenin görüntüsü, rengi, gölgesi veya boyutunun da değişmesine ve nesnenin farklı olarak algılanmasına sebep olmaktadır. Bu sebeple görüntülerin ayırt edilmesinde güçlü bir yapay zeka tekniğinin kullanılması, sınıfların ayırt edilmesini kolaylaştıracaktır. Bir yapay zeka yöntemi olan Evrişimsel Sinir Ağları (ESA), otomatik olarak özellikleri çıkarabilen ve ağ eğitilirken öğrenme sağlandığı için bariz özellikleri kolaylıkla belirleyen bir algoritmadır. Çalışmada ALOI-COL veriseti kullanılmıştır. ALOI-COL, 12 farklı renk sıcaklığıyla elde edilmiş 1000 sınıftan oluşan bir verisetidir. ALOI-COL verisetindeki 29 sınıftan oluşan meyve görüntüleri, ESA mimarilerinden AlexNet, VGG16 ve VGG19 kullanılarak sınıflandırılmıştır. Verisetindeki görüntüler, görüntü işleme teknikleriyle zenginleştirilmiş ve her sınıftan 51 adet görüntü elde edilmiştir. Çalışma; %80-20 ve %60-40 eğitim-test olmak üzere iki yapıda incelenmiştir. 50 devir çalıştırılması sonucunda test verileri, AlexNet (%80-20) ve VGG16 (%60-40) mimarilerinde %100, VGG19 (%80-20) mimarisinde ise %86.49 doğrulukla sınıflandırılmıştır.Master Thesis Bilgisayarlı Tomografi Görüntülerinde Derin Öğrenme Tabanlı Çoklu Organ Segmentasyonu(Konya Teknik Üniversitesi, 2022) Kayhan, Beyza; Uymaz, Sait AliGelişen teknoloji ile birlikte sağlık alanındaki en önemli gelişmeler tıbbi görüntüleme teknikleri sayesinde gerçekleştirilmektedir. Vücudumuzun iç yapısının tıbbi görüntüleme teknikleri aracılığıyla detaylı olarak görüntülenmesi sonucu organların durumu hakkında bilgi edinilmektedir. Elde edilen bu görüntüler radyologlar tarafından değerlendirilir ve yorumlanır. Tıbbi görüntü analizinde öncelikli olarak organların ve dokuların tanınması hastalık teşhisi ve tedavi planlamasının ilk aşamasıdır. Fakat tıbbi görüntüler üzerinden organların tanınması oldukça zor ve zaman alıcı bir işlemdir. Bu çalışmada radyologlara yardımcı olması için karın bölgesine ait bilgisayarlı tomografi görüntüleri üzerinde birden fazla organın segmentasyonunu sağlayan bilgisayar destekli otomatik tanı sistemi gerçekleştirilmiştir. Derin Öğrenme modellerinin diğer bilgisayarlı görü alanlarında olduğu gibi segmentasyon alanında da yüksek başarı elde etmesi nedeniyle otomatik çoklu organ segmentasyon işleminde derin öğrenme yöntemi olan tam evrişimli bir sinir ağı kullanılmıştır. Bu çalışmada Vanderbilt Üniversitesinin çoklu organ segmentasyon yarışması (MICCAI 2015 Multi-Atlas Abdomen Labeling Challenge) için sağladığı veri seti kullanılmıştır. Veri setindeki dosyalar NIfTI formatında 3 boyutlu karın tomografi görüntüleridir. Bu görüntülerden HSV renk uzayında görüntü elde edilerek farklı renk uzaylarının birleştiren iki aşamalı 3D U-Net modelinin kullanıldığı füzyon bir yaklaşım önerilmiştir. Önerilen modelin değerlendirilmesi için Dice benzerlik katsayısı kullanılmıştır ve test işlemi sonucunda en yüksek Dice skorunun elde edildiği organ karaciğer ve en düşük skorun elde edildiği organ sol böbrek üstü bezi olarak bulunmuştur. Tüm organların ortalama doğruluk skoruna bakıldığında radyologlara yardımcı olması için gerçekleştirilen otomatik segmentasyon sisteminin başarılı ve umut verici olduğu görülmüştür.Conference Object Binary African Vultures Optimization Algorithm for Z-Shaped Transfer Functions(2023) Baş, EmineMetaheuristic algorithms are of great importance in solving binary optimization problems. African Vulture Optimization algorithm (AVO) is a swarm intelligence-based heuristic algorithm created by imitating the life forms of African vultures. In this study, the AVO, which has been proposed in recent years, is restructured to solve binary optimization problems. Thus, Binary AVO (BAVO) has been proposed. Four different z-shaped transfer functions are chosen to convert the continuous search space to binary search space. Variations for BAVO are defined according to the transfer function used (BAVO1, BAVO2, BAVO3, and BAVO4). The success of these variations was tested in thirteen classic test functions containing unimodal and multimodal functions. Three different dimensions were determined in the study (5, 10, and 20). Each test function was run ten times independently and the average, standard deviation, best, and worst values were obtained. According to the results obtained, the most successful of these variations has been identified. According to the results, the BAVO4 variant at higher dimensions achieved better results. The success of BAVO with z-shaped transfer functions was demonstrated for the first time in this study.Conference Object Binary Fox Optimization Algorithm Based U-Shaped Transfer Functions for Knapsack Problems(2023) Baş, EmineThis paper examines a new optimization algorithm called Fox optimizer (FOX), which mimics the foraging behavior of foxes while hunting in nature. When the literature is examined, it is seen that there is no version of FOX that solves binary optimization problems. In this study, continuous search space is converted to binary search space by U-shaped transfer functions and BinFOX is proposed. There are four U-shaped transfer functions in the literature. Based on these transfer functions, four BinFOX variants are derived (BinFOX1, BinFOX2, BinFOX3, and BinFOX4). With BinFOX variants, 25 well-known 0-1knapsack problems in the literature have been solved and their success has been demonstrated. The best, worst, mean, standard deviation, time, and gap values of each variant were calculated. According to the results, the most successful BinFOX variant was determined. The success of BinFOX with U-shaped transfer functions was demonstrated for the first time in this study.Article Citation - WoS: 7Citation - Scopus: 9Bindmo: a New Binary Dwarf Mongoose Optimization Algorithm on Based Z-Shaped, U-Shaped, and Taper-Shaped Transfer Functions for Cec-2017 Benchmarks(Springer Science and Business Media Deutschland GmbH, 2024) Baş, EmineIntelligent swarm optimization algorithms have become increasingly common due to their success in solving real-world problems. Dwarf Mongoose Optimization (DMO) algorithm is a newly proposed intelligent swarm optimization algorithm in recent years. It was developed for continuous optimization problem solutions in its original paper. But real-world problems are not always problems that take continuously variable values. Real-world problems are often problems with discrete variables. Therefore, heuristic algorithms proposed for continuous optimization problems need to be updated to solve discrete optimization problems. In this study, DMO has been updated for binary optimization problems and the Binary DMO (BinDMO) algorithm has been proposed. In binary optimization, the search space consists of binary variable values. Transfer functions are often used in the conversion of continuous variable values to binary variable values. In this study, twelve different transfer functions were used (four Z-shaped, four U-shaped, and four Taper-shaped). Thus, twelve different BinDMO variations were obtained (BinDMO1, BinDMO2, …, BinDMO12). The achievements of BinDMO variations were tested on thirteen different unimodal and multimodal classical benchmark functions. The effectiveness of population sizes on the effectiveness of BinDMO was also investigated. When the results were examined, it was determined that the most successful BinDMO variation was BinDMO1 (with Z1-shaped transfer function). The most successful BinDMO variation was compared with three different binary heuristic algorithms selected from the literature (SO, PDO, and AFT) on CEC-2017 benchmark functions. According to the average results, BinDMO was the most successful binary heuristic algorithm. This has proven that BinDMO can be chosen as an alternative algorithm for binary optimization problems. © The Author(s) 2024.Conference Object Business Strategy and Market-Based Performance(2023) Baş, EmineMarket orientation, which is one of the most remarkable orientations; It is the whole of organizational activities aimed at understanding and satisfying the general demands and needs of customers and providing unique customer value. However, in a rapidly changing competitive environment, there is a need for competitive tactics that will strengthen the market orientation and directly contribute to performance, rather than focusing only on market orientation. In this context, the relationships between the components of market orientation, differentiation strategy and firm performance are of great importance.Conference Object Büyük Veri ve Hadoop(2022) Baş, EmineGünümüzde teknolojinin yaygın bir şekilde kullanılmasıyla artan bir very (büyük veri) oluşmuştur. Büyük veri, geleneksel veri işleme uygulamalarının üstesinden gelemeyeceği kadar büyük veya karmaşık veri setlerini analiz etme ve bu veri setlerinden sistematik olarak bilgi elde etmeyi sağlayacak yöntemler arayan bilişim bilimleri sahasıdır. Bir diğer deyişle Big Data, çoğunluğu yapılandırılmamış olan ve sonu gelmez bir şekilde birikmeye devam eden, geleneksel ilişki bazlı veri tabanı teknikleri yardımıyla çözülemeyecek kadar yapısallıktan uzak, çok çok büyük, çok ham ve üstel bir şekilde büyümekte olan veri setleridir. Büyük very çeşitlilik, hız ve hacim olmak üzere üç ana bileşeni ile karakterize edilen geleneksel veri analizinden devrim niteliğinde bir adım gerektirir. Bu verinin şekli itibariyle klasik yöntemlerle işlenmesi zordur. Çeşitlilik (Variety), büyük verileri gerçekten büyük hale getirir. Verinin hacmi veya boyutu (Volume) artık terabayt ve petabayttan daha büyüktür. Hız (Velocity) sadece büyük veri için değil, tüm süreçler için gereklidir. Zaman sınırlı süreçler için, değerini en üst düzeye çıkarmak için kuruluşa akarken büyük veri kullanılmalıdır. Verilerin büyük ölçeği ve yükselişi, geleneksel depolama ve analiz tekniklerini geride bırakır. Araştırmacılar bu verinin kolay bir şekilde işlenmesi için bir arayış içine girmiştir. Büyük veri, MapReduce gibi mimarileri destekleyen yepyeni bir endüstri yaratmıştır. Hadoop bu büyük verinin sınıflandırılması ve işlenmesi konusunda çıkmış bir yazılımdır. Hadoop JAVA programlama dili ile geliştirilmiş popüler, açık kaynaklı bir Apache projesidir. Üretilme amacı ise büyük verilerin daha hızlı işlenmesidir. Temel olarak yazılımı dağıtık dosya sistemi olarak tanımlayabiliriz. Bu dağıtık dosya sistemi HDFS yani Hadoop Distributed File System olarak adlandırılır. Hadoop bileşenleri şunlardır: HDFS, MapReduce, HBase, Pig, Hive ve ZooKeeper dir. Bu bildiride büyük veri ve hadoop konusunda bir araştırma sunulmuştur.Conference Object Category Prediction of Turkish Poems Using Artificial Intelligence and Natural Language Processing Methods With Mlp and Svm Algorithms(2023) Korkmaz, Sedat; Yönet, EmrePeople are able to communicate with each other through language. The languages that people use are called natural languages. Natural languages such as English, Turkish, French, etc. are used for communication. Similarly, people can communicate with machines, and for this purpose, natural languages can be made understandable by machines by subjecting them to a series of processes. For this purpose, it is necessary to analyze the canonical structures of natural languages and make them understandable. This process is basically carried out on four levels of analysis: Lexical Analysis, Syntactic Analysis, Semantic Analysis, and Discourse Analysis. Natural Language Processing (NLP) is a branch of artificial intelligence that deals with the processing of natural language input in the form of speech and text. The use of NLP is prevalent in a variety of fields, such as intelligent virtual assistants, search engines, social media monitoring platforms, automatic translation systems, text summarization systems, and text categorization systems. This study presents a model for predicting the categories of Turkish poems using natural language processing and machine learning methods. The project code was written in Python using the Anaconda development environment. The Zemberek library was used to perform various operations on Turkish texts. The dataset used consisted of 4198 poems taken from a website and categorized into 21 categories. During the data preprocessing stage, the texts were converted to lower case, punctuation marks, spaces, and stop-words were removed and root extraction was performed. The Term Frequency-Inverse Document Frequency (TF-IDF) method was used for text representation and evaluated the success rates of models created using Support Vector Machine (SVM) and Multilayer Perceptron (MLP) classifiers. The findings indicated that the SVM classifier outperformed the MLP classifier.Article Citation - WoS: 11Citation - Scopus: 12Chaotic Artificial Algae Algorithm for Solving Global Optimization With Real-World Space Trajectory Design Problems(Springer Heidelberg, 2025) Turkoğlu, Bahaeddin; Uymaz, Sait Ali; Kaya, ErsinThe artificial algae algorithm (AAA) is a recently introduced metaheuristic algorithm inspired by the behavior and characteristics of microalgae. Like other metaheuristic algorithms, AAA faces challenges such as local optima and premature convergence. Various strategies to address these issues and enhance the performance of the algorithm have been proposed in the literature. These include levy flight, local search, variable search, intelligent search, multi-agent systems, and quantum behaviors. This paper introduces chaos theory as a strategy to improve AAA's performance. Chaotic maps are utilized to effectively balance exploration and exploitation, prevent premature convergence, and avoid local minima. Ten popular chaotic maps are employed to enhance AAA's performance, resulting in the chaotic artificial algae algorithm (CAAA). CAAA's performance is evaluated on thirty benchmark test functions, including unimodal, multimodal, and fixed dimension problems. The algorithm is also tested on three classical engineering problems and eight space trajectory design problems at the European Space Agency. A statistical analysis using the Friedman and Wilcoxon tests confirms that CAA demonstrates successful performance in optimization problems.Article Citation - WoS: 17Citation - Scopus: 15Chaotic Golden Ratio Guided Local Search for Big Data Optimization(Elsevier - Division Reed Elsevier India Pvt Ltd, 2023) Koçer, Havva Gül; Türkoğlu, Bahaeddin; Uymaz, Sait AliBiological systems where order arises from disorder inspires for many metaheuristic optimization techniques. Self-organization and evolution are the common behaviour of chaos and optimization algorithms. Chaos can be defined as an ordered state of disorder that is hypersensitive to initial conditions. Therefore, chaos can help create order out of disorder. In the scope of this work, Golden Ratio Guided Local Search method was improved with inspiration by chaos and named as Chaotic Golden Ratio Guided Local Search (CGRGLS). Chaos is used as a random number generator in the proposed method. The coefficient in the equation for determining adaptive step size was derived from the Singer Chaotic Map. Performance evaluation of the proposed method was done by using CGRGLS in the local search part of MLSHADE-SPA algorithm. The experimental studies carried out with the electroencephalographic signal decomposition based optimization problems, named as Big Data optimization problem (Big-Opt), introduced at the Congress on Evolutionary Computing Big Data Competition (CEC'2015). Experimental results have shown that the local search method developed using chaotic maps has an effect that increases the performance of the algorithm.& COPY; 2023 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

