Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.13091/544
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Engin, Orhan | - |
dc.contributor.author | Güçlü, Abdullah | - |
dc.date.accessioned | 2021-12-13T10:26:54Z | - |
dc.date.available | 2021-12-13T10:26:54Z | - |
dc.date.issued | 2018 | - |
dc.identifier.issn | 1568-4946 | - |
dc.identifier.issn | 1872-9681 | - |
dc.identifier.uri | https://doi.org/10.1016/j.asoc.2018.08.002 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.13091/544 | - |
dc.description.abstract | This paper proposes an effective new hybrid ant colony algorithm based on crossover and mutation mechanism for no-wait flow shop scheduling with the criterion to minimize the maximum completion time. The no-wait flow shop is known as a typical NP-hard combinational optimization problem. The hybrid ant colony algorithm is applied to the 192 benchmark instances from literature in order to minimize makespan. The performance of the proposed Hybrid Ant Colony algorithm is compared to the Adaptive Learning Approach and Genetic Heuristic algorithm which are used in previous studies to solve the same set of benchmark problems. The computational experiments show that the proposed Hybrid Ant Colony algorithm provides better results relative to the other algorithms. (C) 2018 Elsevier B.V. All rights reserved. | en_US |
dc.language.iso | en | en_US |
dc.publisher | ELSEVIER SCIENCE BV | en_US |
dc.relation.ispartof | APPLIED SOFT COMPUTING | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Scheduling | en_US |
dc.subject | No-Wait Flow Shop | en_US |
dc.subject | Hybrid Ant Colony Algorithm | en_US |
dc.subject | Makespan | en_US |
dc.subject | Particle Swarm Optimization | en_US |
dc.subject | Iterated Greedy Algorithm | en_US |
dc.subject | Total Completion-Time | en_US |
dc.subject | Makespan Criterion | en_US |
dc.subject | Genetic Algorithms | en_US |
dc.subject | Minimize Makespan | en_US |
dc.subject | Setup Times | en_US |
dc.subject | In-Process | en_US |
dc.subject | Flowshops | en_US |
dc.subject | Search | en_US |
dc.title | A new hybrid ant colony optimization algorithm for solving the no-wait flow shop scheduling problems | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.asoc.2018.08.002 | - |
dc.identifier.scopus | 2-s2.0-85052452159 | en_US |
dc.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Endüstri Mühendisliği Bölümü | en_US |
dc.authorid | Engin, Orhan/0000-0002-7250-0317 | - |
dc.authorwosid | Engin, Orhan/AAG-6283-2019 | - |
dc.identifier.volume | 72 | en_US |
dc.identifier.startpage | 166 | en_US |
dc.identifier.endpage | 176 | en_US |
dc.identifier.wos | WOS:000448813100013 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.authorscopusid | 55948252100 | - |
dc.authorscopusid | 57203622904 | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.languageiso639-1 | en | - |
item.grantfulltext | embargo_20300101 | - |
item.fulltext | With Fulltext | - |
crisitem.author.dept | 02.09. Department of Industrial Engineering | - |
Appears in Collections: | Mühendislik ve Doğa Bilimleri Fakültesi Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collections WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collections |
Files in This Item:
File | Size | Format | |
---|---|---|---|
1-s2.0-S1568494618304502-main.pdf Until 2030-01-01 | 1.4 MB | Adobe PDF | View/Open Request a copy |
CORE Recommender
SCOPUSTM
Citations
109
checked on Sep 16, 2023
WEB OF SCIENCETM
Citations
92
checked on Jan 30, 2023
Page view(s)
62
checked on Sep 25, 2023
Download(s)
4
checked on Sep 25, 2023
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.