Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.13091/3783
Title: ATMOSFERİK PARTİKÜL MADDELERİN MAKİNE ÖĞRENMESİ İLE TAHMİNİ: BEŞİKTAŞ, İSTANBUL ÖRNEĞİ
Authors: Yağmur, Ece
Keywords: Hava Kalitesi
Makine Öğrenmesi
Doğrusal Regresyon
Rassal Orman Algoritması
Destek Vektör Makineleri
Yapay Sinir Ağları
Issue Date: 2022
Abstract: Hava kirliliği, insan sağlığına ve çevreye olumsuz etkileri nedeniyle uzun yıllardır tartışılmakta olan bir problemdir. Bu problemi çözmek ve gereken önlemleri almak amacıyla hava kalitesinin değerlendirilmesi önem arz etmektedir. Hava kalitesi değerlendirilirken kirletici konsantrasyonları analiz edilerek, toplum açısından herkesin anlayabileceği bir indeks sistemi kullanılmaktadır. Ulusal Hava Kalitesi İndeksi kapsamında kalite indeksi hesaplanan beş temel kirleticiden biri, ciddi solunum yolu hastalıklarına sebep olan atmosferik partikül maddelerdir. Bu çalışmada çapı 2,5 mikrondan küçük olan ve PM2,5 olarak adlandırılan atmosferik partikül maddelerin oluşumunda trafik yoğunluğu, meteorolojik koşullar ve NOX, SO2, PM10 hava kirleticilerinin etkisi araştırılmıştır. Bu amaçla İstanbul Büyükşehir Belediyesi tarafından farklı alanlarda verilerin paylaşıldığı açık veri portalından yararlanılarak Beşiktaş bölgesindeki hava kalitesi izleme istasyonu incelenmiştir. Atmosferik partikül maddelerin tahmininde Çoklu Doğrusal Regresyon (ÇDR), Rassal Orman (RO), Destek Vektör Makineleri (DVM) ve Yapay Sinir Ağları (YSA) kullanılmıştır. Regresyon denkleminde farklı bağımsız değişkenlerin incelendiği farklı modeller geliştirilmiştir. Geliştirilen modeller ve kullanılan makine öğrenme algoritmaları determinasyon katsayısı (R2), düzeltilmiş R2, ortalama mutlak hata, ortalama hata karesi ve ortalama hata karesi kökü performans ölçütlerine göre karşılaştırılmıştır. Meteorolojik parametreler, trafik yoğunluğu, tarih ve PM10 konsantrasyonunun bağımsız değişken olarak kullanıldığı model, incelenen tüm performans ölçütlerine göre diğer modellere üstünlük sağlamıştır. Algoritmalar karşılaştırıldığında ise performans ölçütlerinin modellere göre değişiklik gösterdiği görülmüş ancak en iyi performans ortalamasına sahip teknik RO, en kötü performans ortalamasına sahip teknik ise ÇDR olarak bulunmuştur.
URI: https://doi.org/10.36306/konjes.1082866
https://search.trdizin.gov.tr/yayin/detay/1143467
https://hdl.handle.net/20.500.13091/3783
ISSN: 2667-8055
Appears in Collections:TR Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collections

Files in This Item:
File SizeFormat 
10.36306-konjes.1082866-2290190.pdf1.4 MBAdobe PDFView/Open
Show full item record



CORE Recommender

Page view(s)

36
checked on Feb 26, 2024

Download(s)

10
checked on Feb 26, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.