Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.13091/3267
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAcar, Yunus Emre-
dc.contributor.authorSaritas, İsmail-
dc.contributor.authorYaldız, Ercan-
dc.date.accessioned2023-01-08T19:04:21Z-
dc.date.available2023-01-08T19:04:21Z-
dc.date.issued2022-
dc.identifier.issn1300-0632-
dc.identifier.issn1303-6203-
dc.identifier.urihttps://doi.org/10.55730/1300-0632.3926-
dc.identifier.urihttps://hdl.handle.net/20.500.13091/3267-
dc.description.abstractWhen detecting the human targets behind walls, false detections occur for many systematic and environmental reasons. Identifying and eliminating these false detections is of great importance for many applications. This study investigates the potential of machine learning (ML) algorithms to distinguish between the human and human-like targets behind walls. For this purpose, a stepped-frequency continuous-wave (SFCW) radar has been set up. Experiments have been carried out with real human targets and moving plates imitating a regular breath of a healthy human. Unlike conventional methods, human and human-like returns are classified using range-Doppler images containing range and Doppler information. Then, the histogram of oriented gradients (HOG) features of the range-Doppler images are extracted, and the number of these features is reduced by principal component analysis (PCA). Finally, popular ML algorithms are executed to distinguish the human and human-like returns. The performances of the ML algorithms are compared for both range-time and range-Doppler images with or without HOG features. Experiments have indicated that the HOG features of the range-Doppler profiles provide the best results with the support vector machine (SVM) classifier with an accuracy of 93.57%.en_US
dc.description.sponsorshipAcademic Staff Training Program [2018-OYP-032]; Scientific Research Projects Coordinatorship of Selcuk University [19301003]en_US
dc.description.sponsorshipThis work is financially supported by the Academic Staff Training Program [2018-OYP-032] and Scientific Research Projects Coordinatorship [19301003] of Selcuk University.en_US
dc.language.isoenen_US
dc.publisherScientific and Technological Research Council Turkeyen_US
dc.relation.ispartofTurkish Journal of Electrical Engineering and Computer Sciencesen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectHOG featureen_US
dc.subjecthuman detectionen_US
dc.subjectmachine learningen_US
dc.subjectthrough-the-wallen_US
dc.subjectradaren_US
dc.subjectFmcw Radaren_US
dc.titleComparison of ML algorithms to distinguish between human or human-like targets using the HOG features of range-time and range-Doppler images in through-the-wall applicationsen_US
dc.typeArticleen_US
dc.identifier.doi10.55730/1300-0632.3926-
dc.identifier.scopus2-s2.0-85142295148en_US
dc.departmentFakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.identifier.volume30en_US
dc.identifier.issue6en_US
dc.identifier.startpage2086en_US
dc.identifier.endpage2096en_US
dc.identifier.wosWOS:000884407400006en_US
dc.institutionauthorYaldız, Ercan-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.trdizinid1142471en_US
item.languageiso639-1en-
item.grantfulltextopen-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.dept02.04. Department of Electrical and Electronics Engineering-
Appears in Collections:Mühendislik ve Doğa Bilimleri Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collections
TR Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collections
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collections
Files in This Item:
File SizeFormat 
Comparison of ML algorithms to distinguish between human or human.pdf1.67 MBAdobe PDFView/Open
Show simple item record

CORE Recommender

Page view(s)

24
checked on May 29, 2023

Download(s)

8
checked on May 29, 2023

Google ScholarTM

Check

Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.