Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.13091/3134
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKoç, İsmail-
dc.contributor.authorAtay, Yılmaz-
dc.contributor.authorBabaoğlu, İsmail-
dc.date.accessioned2022-11-28T16:54:40Z-
dc.date.available2022-11-28T16:54:40Z-
dc.date.issued2022-
dc.identifier.issn0952-1976-
dc.identifier.issn1873-6769-
dc.identifier.urihttps://doi.org/10.1016/j.engappai.2022.104783-
dc.identifier.urihttps://doi.org/10.1016/j.engappai.2022.104783-
dc.identifier.urihttps://hdl.handle.net/20.500.13091/3134-
dc.description.abstractLand readjustment and redistribution (LR) is an important approach used to realize development plans by converting rural lands to urban land and also providing urban infrastructure. The LR problem, which is a complex challenging real-world problem, is a discrete optimization problem because its structure is similar to TSP (Traveling Salesman Problem) and scheduling problems which are combinatorial optimization problems. Since classical mathematical methods are insufficient for solving NP (Nondeterministic Polynomial) optimization problems due to time limitations, meta-heuristic optimization algorithms are commonly utilized for solving these kinds of problems. In this paper, meta-heuristic algorithms including genetic, particle swarm, differential evolution, artificial bee, and tree seed algorithms are utilized for solving LR problems. The stated meta-heuristic algorithms are used by applying spatial-based crossover and mutation operators depending upon the LR problem on each algorithm. Moreover, a synthetic dataset is used to ensure that the quality of the solution obtained is acceptable to everyone, to prove an optimal solution easily. By utilizing the suggested spatial-based crossover and mutation operators, finding the ideal solution is aimed using the synthetic dataset. In addition, five different modifications on TSA (Tree-Seed Algorithm) are performed and used to solve LR problems. All the modified versions of TSA are carried out only by changing the mechanism of seed reproduction. The novel TSA approaches are respectively named as tcTSA (tournament current), tbTSA (tournament best), pbTSA (personal-best based), t2TSA (double tournament), and elTSA (elitism based). In the experimental studies, the hybrid approach, which includes the crossover and mutation operators, is successfully applied in all of the algorithms under equal conditions for a fair comparison. According to experimental results performed using the dataset, it can be clearly stated that especially t2TSA outperforms all the algorithms in terms of performance and time.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofEngineering Applications of Artificial Intelligenceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSwarm intelligence algorithmsen_US
dc.subjectEvolutionary algorithmsen_US
dc.subjectHybrid approachen_US
dc.subjectSpatial-based crossover and mutation operatorsen_US
dc.subjectEfficient TSAen_US
dc.subjectUrban land readjustmenten_US
dc.subjectOptimizationen_US
dc.subjectToolen_US
dc.titleDiscrete tree seed algorithm for urban land readjustmenten_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.engappai.2022.104783-
dc.identifier.scopus2-s2.0-85125790737en_US
dc.departmentFakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Yazılım Mühendisliği Bölümüen_US
dc.departmentFakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.authoridATAY, Yılmaz/0000-0002-3298-3334-
dc.authoridATAY, YILMAZ/0000-0002-3298-3334-
dc.authoridKOC, ISMAIL/0000-0003-1311-5918-
dc.authorwosidATAY, Yılmaz/A-3218-2017-
dc.authorwosidATAY, YILMAZ/AGP-8371-2022-
dc.identifier.volume112en_US
dc.identifier.wosWOS:000797651900005en_US
dc.institutionauthorKoç, İsmail-
dc.institutionauthorBabaoğlu, İsmail-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.cerifentitytypePublications-
item.grantfulltextembargo_20300101-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.fulltextWith Fulltext-
crisitem.author.dept02.13. Department of Software Engineering-
crisitem.author.dept02.03. Department of Computer Engineering-
Appears in Collections:Mühendislik ve Doğa Bilimleri Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collections
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collections
Files in This Item:
File SizeFormat 
1-s2.0-S0952197622000665-main (1).pdf
  Until 2030-01-01
8.69 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Apr 13, 2024

WEB OF SCIENCETM
Citations

13
checked on Apr 13, 2024

Page view(s)

134
checked on Apr 15, 2024

Download(s)

6
checked on Apr 15, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.